These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37606325)

  • 1. The influence of counterion structure identity on conductivity, dynamical correlations, and ion transport mechanisms in polymerized ionic liquids.
    Zhang Z; Krishna R; Zofchak ES; Marioni N; Sachar HS; Ganesan V
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Correlations and Partial Ionicities in the Lamellar Phases of Block Copolymeric Ionic Liquids.
    Zhang Z; Sass J; Krajniak J; Ganesan V
    ACS Macro Lett; 2022 Nov; 11(11):1265-1271. PubMed ID: 36282047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Evidence of Mobile Ion Hopping in Polymerized Ionic Liquids.
    Liu H; Luo X; Sokolov AP; Paddison SJ
    J Phys Chem B; 2021 Jan; 125(1):372-381. PubMed ID: 33393762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Counterion Structure on Conductivity of Polymerized Ionic Liquids.
    Keith JR; Rebello NJ; Cowen BJ; Ganesan V
    ACS Macro Lett; 2019 Apr; 8(4):387-392. PubMed ID: 35651142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of molecular weight on ion-transport properties of polymeric ionic liquids.
    Keith JR; Mogurampelly S; Aldukhi F; Wheatle BK; Ganesan V
    Phys Chem Chem Phys; 2017 Nov; 19(43):29134-29145. PubMed ID: 29085931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing ion transport in ionic liquids and polymerized ionic liquids.
    Xiao W; Yang Q; Zhu S
    Sci Rep; 2020 May; 10(1):7825. PubMed ID: 32385380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion transport in backbone-embedded polymerized ionic liquids.
    Keith JR; Ganesan V
    J Chem Phys; 2019 Sep; 151(12):124902. PubMed ID: 31575176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Correlation between Ionic Liquid Transport Properties and Ion Pair Lifetimes: A Molecular Dynamics Study.
    Zhang Y; Maginn EJ
    J Phys Chem Lett; 2015 Feb; 6(4):700-5. PubMed ID: 26262489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerized Ionic Liquids: Correlation of Ionic Conductivity with Nanoscale Morphology and Counterion Volume.
    Iacob C; Matsumoto A; Brennan M; Liu H; Paddison SJ; Urakawa O; Inoue T; Sangoro J; Runt J
    ACS Macro Lett; 2017 Sep; 6(9):941-946. PubMed ID: 35650895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Simulations of Anion and Temperature Dependence on Structure and Dynamics of 1-Hexyl-3-methylimidazolium Ionic Liquids.
    Ramya KR; Kumar P; Venkatnathan A
    J Phys Chem B; 2015 Nov; 119(46):14800-6. PubMed ID: 26507854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.
    Liu H; Maginn E
    J Chem Phys; 2011 Sep; 135(12):124507. PubMed ID: 21974535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MD study of the applicability of the Walden rule and the Nernst-Einstein model for ionic liquids.
    Liu H; Maginn E
    Chemphyschem; 2012 May; 13(7):1701-7. PubMed ID: 22378767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms Underlying Ion Transport in Polymerized Ionic Liquids.
    Mogurampelly S; Keith JR; Ganesan V
    J Am Chem Soc; 2017 Jul; 139(28):9511-9514. PubMed ID: 28686437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pressure on the transport properties of ionic liquids: 1-alkyl-3-methylimidazolium salts.
    Harris KR; Kanakubo M; Tsuchihashi N; Ibuki K; Ueno M
    J Phys Chem B; 2008 Aug; 112(32):9830-40. PubMed ID: 18637684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion Mobilities, Transference Numbers, and Inverse Haven Ratios of Polymeric Ionic Liquids.
    Zhang Z; Wheatle BK; Krajniak J; Keith JR; Ganesan V
    ACS Macro Lett; 2020 Jan; 9(1):84-89. PubMed ID: 35638661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging Database and Experimental Analysis to Reveal Super-hydrodynamic Conductivity Scaling Regimes in Ionic Liquids.
    Cashen RK; Donoghue MM; Schmeiser AJ; Gebbie MA
    J Phys Chem B; 2022 Aug; 126(32):6039-6051. PubMed ID: 35939324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing the effect of [PF
    Kowsari MH; Ebrahimi S
    Phys Chem Chem Phys; 2018 May; 20(19):13379-13393. PubMed ID: 29721565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR.
    Gouverneur M; Kopp J; van Wüllen L; Schönhoff M
    Phys Chem Chem Phys; 2015 Nov; 17(45):30680-6. PubMed ID: 26523918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport Properties of Protic Ionic Liquids Based on Triazolium and Imidazolium: Development of an Air-Free Conductivity Setup.
    Morais EM; Idström A; Evenäs L; Martinelli A
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids.
    Kowsari MH; Alavi S; Najafi B; Gholizadeh K; Dehghanpisheh E; Ranjbar F
    Phys Chem Chem Phys; 2011 May; 13(19):8826-37. PubMed ID: 21455505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.