These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37606336)

  • 1. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework.
    Yang J; Chen Z; Sun H; Samanta A
    J Chem Theory Comput; 2023 Sep; 19(17):5910-5923. PubMed ID: 37581304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of Chemical Descriptors by Machine Learning Reveals Atomistic Insights into Solute-Lipid Interactions.
    Lange JJ; Anelli A; Alsenz J; Kuentz M; O'Dwyer PJ; Saal W; Wyttenbach N; Griffin BT
    Mol Pharm; 2024 Jul; 21(7):3343-3355. PubMed ID: 38780534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties.
    Guha R; Velegol D
    J Cheminform; 2023 May; 15(1):54. PubMed ID: 37211605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descriptor generation from Morgan fingerprint using persistent homology.
    Ehiro T
    SAR QSAR Environ Res; 2024 Jan; 35(1):31-51. PubMed ID: 38234251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact Hybrid Multi-Color Space Descriptor Using Clustering-Based Feature Selection for Texture Classification.
    Alimoussa M; Porebski A; Vandenbroucke N; El Fkihi S; Oulad Haj Thami R
    J Imaging; 2022 Aug; 8(8):. PubMed ID: 36005460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models.
    Jiang D; Wu Z; Hsieh CY; Chen G; Liao B; Wang Z; Shen C; Cao D; Wu J; Hou T
    J Cheminform; 2021 Feb; 13(1):12. PubMed ID: 33597034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach to describe chemical environments in high-dimensional neural network potentials.
    Kocer E; Mason JK; Erturk H
    J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid localized graph kernel for machine learning energy-related properties of molecules and solids.
    Casier B; Chagas da Silva M; Badawi M; Pascale F; Bučko T; Lebègue S; Rocca D
    J Comput Chem; 2021 Jul; 42(20):1390-1401. PubMed ID: 34009668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of hyper-parameters in the atomic descriptors for efficient and robust molecular dynamics simulations with machine learning forces.
    Lin J; Tamura R; Futamura Y; Sakurai T; Miyazaki T
    Phys Chem Chem Phys; 2023 Jul; 25(27):17978-17986. PubMed ID: 37377109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR shifts in aluminosilicate glasses via machine learning.
    Chaker Z; Salanne M; Delaye JM; Charpentier T
    Phys Chem Chem Phys; 2019 Oct; 21(39):21709-21725. PubMed ID: 31389435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations.
    Winter R; Montanari F; Noé F; Clevert DA
    Chem Sci; 2019 Feb; 10(6):1692-1701. PubMed ID: 30842833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constructing first-principles phase diagrams of amorphous Li
    Artrith N; Urban A; Ceder G
    J Chem Phys; 2018 Jun; 148(24):241711. PubMed ID: 29960321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors.
    Guan Y; Coley CW; Wu H; Ranasinghe D; Heid E; Struble TJ; Pattanaik L; Green WH; Jensen KF
    Chem Sci; 2020 Dec; 12(6):2198-2208. PubMed ID: 34163985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.