BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37606370)

  • 21. Epigenetics of Epstein Barr virus - A review.
    Shareena G; Kumar D
    Biochim Biophys Acta Mol Basis Dis; 2023 Dec; 1869(8):166838. PubMed ID: 37544529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site.
    Chen HS; Martin KA; Lu F; Lupey LN; Mueller JM; Lieberman PM; Tempera I
    J Virol; 2014 Feb; 88(3):1703-13. PubMed ID: 24257606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter.
    Lupey-Green LN; Moquin SA; Martin KA; McDevitt SM; Hulse M; Caruso LB; Pomerantz RT; Miranda JL; Tempera I
    Virology; 2017 Jul; 507():220-230. PubMed ID: 28456021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma.
    Choi SJ; Shin YS; Kang BW; Kim JG; Won KJ; Lieberman PM; Cho H; Kang H
    Arch Pharm Res; 2017 Aug; 40(8):894-905. PubMed ID: 28779374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epstein-Barr virus-positive gastric cancer involves enhancer activation through activating transcription factor 3.
    Asakawa Y; Okabe A; Fukuyo M; Li W; Ikeda E; Mano Y; Funata S; Namba H; Fujii T; Kita K; Matsusaka K; Kaneda A
    Cancer Sci; 2020 May; 111(5):1818-1828. PubMed ID: 32119176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epstein-Barr virus infection as an epigenetic driver of tumorigenesis.
    Kaneda A; Matsusaka K; Aburatani H; Fukayama M
    Cancer Res; 2012 Jul; 72(14):3445-50. PubMed ID: 22761333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Andrographolide Inhibits Epstein-Barr Virus Lytic Reactivation in EBV-Positive Cancer Cell Lines through the Modulation of Epigenetic-Related Proteins.
    Malat P; Ekalaksananan T; Heawchaiyaphum C; Suebsasana S; Roytrakul S; Yingchutrakul Y; Pientong C
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of Latent Epstein-Barr Virus.
    Lu F; Wiedmer A; Martin KA; Wickramasinghe PJMS; Kossenkov AV; Lieberman PM
    J Virol; 2017 Oct; 91(20):. PubMed ID: 28794029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta.
    Almohammed R; Osborn K; Ramasubramanyan S; Perez-Fernandez IBN; Godfrey A; Mancini EJ; Sinclair AJ
    J Gen Virol; 2018 Jun; 99(6):805-817. PubMed ID: 29580369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus.
    Chau CM; Lieberman PM
    J Virol; 2004 Nov; 78(22):12308-19. PubMed ID: 15507618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters.
    Reusch JA; Nawandar DM; Wright KL; Kenney SC; Mertz JE
    J Virol; 2015 Feb; 89(3):1731-43. PubMed ID: 25410866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Could Changing the DNA Methylation Landscape Promote the Destruction of Epstein-Barr Virus-Associated Cancers?
    Sinclair AJ
    Front Cell Infect Microbiol; 2021; 11():695093. PubMed ID: 34123880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors.
    Countryman JK; Gradoville L; Miller G
    J Virol; 2008 May; 82(10):4706-19. PubMed ID: 18337569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome.
    Ramasubramanyan S; Osborn K; Flower K; Sinclair AJ
    J Virol; 2012 Feb; 86(3):1809-19. PubMed ID: 22090141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic regulation of EBV persistence and oncogenesis.
    Tempera I; Lieberman PM
    Semin Cancer Biol; 2014 Jun; 26():22-9. PubMed ID: 24468737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epstein-Barr virus gene expression and latency pattern in gastric carcinomas: a systematic review.
    Ribeiro J; Oliveira C; Malta M; Sousa H
    Future Oncol; 2017 Mar; 13(6):567-579. PubMed ID: 28118740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer.
    Gao Y; Fu Y; Wang J; Zheng X; Zhou J; Ma J
    Biochem Biophys Res Commun; 2021 Apr; 547():1-8. PubMed ID: 33588233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation.
    Siddiqi UZ; Vaidya AS; Li X; Marcon E; Tsao SW; Greenblatt J; Frappier L
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31341047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic regulation of latent Epstein-Barr virus promoters.
    Takacs M; Banati F; Koroknai A; Segesdi J; Salamon D; Wolf H; Niller HH; Minarovits J
    Biochim Biophys Acta; 2010; 1799(3-4):228-35. PubMed ID: 19853674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Latency pattern of Epstein-Barr virus and methylation status in Epstein-Barr virus-associated hemophagocytic syndrome.
    Yoshioka M; Kikuta H; Ishiguro N; Endo R; Kobayashi K
    J Med Virol; 2003 Jul; 70(3):410-9. PubMed ID: 12767005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.