These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37606640)

  • 1. Characterizing the Folding Transition-State Ensembles in the Energy Landscape of an RNA Tetraloop.
    Viegas RG; Sanches MN; Chen AA; Paulovich FV; Garcia AE; Leite VBP
    J Chem Inf Model; 2023 Sep; 63(17):5641-5649. PubMed ID: 37606640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ELViM: Exploring Biomolecular Energy Landscapes through Multidimensional Visualization.
    Viegas RG; Martins IBS; Sanches MN; Oliveira Junior AB; Camargo JB; Paulovich FV; Leite VBP
    J Chem Inf Model; 2024 Apr; 64(8):3443-3450. PubMed ID: 38506664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-energy landscape of a hyperstable RNA tetraloop.
    Miner JC; Chen AA; García AE
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6665-70. PubMed ID: 27233937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing Biomolecular Pathways and Metastable States.
    Oliveira AB; Yang H; Whitford PC; Leite VBP
    J Chem Theory Comput; 2019 Nov; 15(11):6482-6490. PubMed ID: 31618581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Energy Channeling and Malleable Transition States: Molecular Dynamics Simulations and Free Energy Landscapes for the Thermal Unfolding of Protein U1A and 13 Mutants.
    Dang NL; Baranger AM; Beveridge DL
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Energy Landscape of Intrinsically Disordered Protein Ensembles.
    Viegas RG; Martins IBS; Leite VBP
    J Chem Inf Model; 2024 May; 64(10):4149-4157. PubMed ID: 38713459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy profile of RNA hairpins: a molecular dynamics simulation study.
    Deng NJ; Cieplak P
    Biophys J; 2010 Feb; 98(4):627-36. PubMed ID: 20159159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-atom Monte Carlo simulation of GCAA RNA folding.
    Nivón LG; Shakhnovich EI
    J Mol Biol; 2004 Nov; 344(1):29-45. PubMed ID: 15504400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium Denaturation and Preferential Interactions of an RNA Tetraloop with Urea.
    Miner JC; García AE
    J Phys Chem B; 2017 Apr; 121(15):3734-3746. PubMed ID: 28181434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining the Ensembles of Amyloid-β Monomer Variants and Their Propensities to Form Fibers Using an Energy Landscape Visualization Method.
    Sanches MN; Knapp K; Oliveira AB; Wolynes PG; Onuchic JN; Leite VBP
    J Phys Chem B; 2022 Jan; 126(1):93-99. PubMed ID: 34968059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
    Chakraborty D; Collepardo-Guevara R; Wales DJ
    J Am Chem Soc; 2014 Dec; 136(52):18052-61. PubMed ID: 25453221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular insights into the stereospecificity of arginine in RNA tetraloop folding.
    Vijay A; Mukherjee A
    Phys Chem Chem Phys; 2023 Apr; 25(16):11301-11310. PubMed ID: 37066999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving the fine structure in the energy landscapes of repeat proteins.
    Sanches MN; Parra RG; Viegas RG; Oliveira AB; Wolynes PG; Ferreiro DU; Leite VBP
    QRB Discov; 2022; 3():e7. PubMed ID: 37529289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding heterogeneity correlates with protein folding transition state passage time as revealed by data sonification.
    Scaletti C; Russell PPS; Hebel KJ; Rickard MM; Boob M; Danksagmüller F; Taylor SA; Pogorelov TV; Gruebele M
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2319094121. PubMed ID: 38768341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Energy Landscape of Spectrin R15 and R16 and the Effects of Non-native Interactions.
    da Silva FB; Martins de Oliveira V; de Oliveira Junior AB; Contessoto VG; Leite VBP
    J Phys Chem B; 2023 Feb; 127(6):1291-1300. PubMed ID: 36723393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study.
    Nguyen PH; Stock G; Mittag E; Hu CK; Li MS
    Proteins; 2005 Dec; 61(4):795-808. PubMed ID: 16240446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors.
    Jang SS; Dubnik S; Hon J; Hellenkamp B; Lynall DG; Shepard KL; Nuckolls C; Gonzalez RL
    J Am Chem Soc; 2023 Jan; 145(1):402-412. PubMed ID: 36547391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations.
    Mickler M; Dima RI; Dietz H; Hyeon C; Thirumalai D; Rief M
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20268-73. PubMed ID: 18079292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.