These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37606772)
1. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH) Kuttiyathil MS; Ali L; Ahmed OH; Altarawneh M Environ Sci Pollut Res Int; 2023 Sep; 30(43):98300-98313. PubMed ID: 37606772 [TBL] [Abstract][Full Text] [Related]
2. Debromination of novel brominated flame retardants using Zn-based additives: A viable thermochemical approach in the mitigation of toxic effects during e-waste recycling. Kuttiyathil MS; Ali L; Hajamohideen AR; Altarawneh M Environ Pollut; 2024 Apr; 346():123645. PubMed ID: 38402939 [TBL] [Abstract][Full Text] [Related]
3. Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. Ali L; A Mousa H; Al-Harahsheh M; Al-Zuhair S; Abu-Jdayil B; Al-Marzouqi M; Altarawneh M Waste Manag; 2022 Jan; 137():283-293. PubMed ID: 34823135 [TBL] [Abstract][Full Text] [Related]
4. Co-pyrolysis of polyethylene with products from thermal decomposition of brominated flame retardants. Altarawneh M; Ahmed OH; Al-Harahsheh M; Jiang ZT; Huang NM; Lim HN; Dlugogorski BZ Chemosphere; 2020 Sep; 254():126766. PubMed ID: 32957264 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Thermogravimetric Data in Bromine Captured from Brominated Flame Retardants (BFRs) in e-Waste Treatment Using Machine Learning Approaches. Ali L; Sivaramakrishnan K; Kuttiyathil MS; Chandrasekaran V; Ahmed OH; Al-Harahsheh M; Altarawneh M J Chem Inf Model; 2023 Apr; 63(8):2305-2320. PubMed ID: 37036888 [TBL] [Abstract][Full Text] [Related]
6. Reduction of brominated flame retardants (BFRs) in plastics from waste electrical and electronic equipment (WEEE) by solvent extraction and the influence on their thermal decomposition. Evangelopoulos P; Arato S; Persson H; Kantarelis E; Yang W Waste Manag; 2019 Jul; 94():165-171. PubMed ID: 29925487 [TBL] [Abstract][Full Text] [Related]
7. Effect of brominated flame retardant on the pyrolysis products of polymers originating in WEEE. Charitopoulou MA; Papadopoulou L; Achilias DS Environ Sci Pollut Res Int; 2022 Apr; 29(20):29570-29582. PubMed ID: 34312751 [TBL] [Abstract][Full Text] [Related]
8. Degradation of tetrabromobisphenol A (TBBA) with calcium hydroxide: a thermo-kinetic analysis. Ali L; Sivaramakrishnan K; Kuttiyathil MS; Chandrasekaran V; Ahmed OH; Al-Harahsheh M; Altarawneh M RSC Adv; 2023 Feb; 13(10):6966-6982. PubMed ID: 36865571 [TBL] [Abstract][Full Text] [Related]
10. Pyrolysis treatment of nonmetal fraction of waste printed circuit boards: Focusing on the fate of bromine. Xiong J; Yu S; Wu D; Lü X; Tang J; Wu W; Yao Z Waste Manag Res; 2020 Nov; 38(11):1251-1258. PubMed ID: 31902310 [TBL] [Abstract][Full Text] [Related]
11. Catalytic pyrolysis of waste printed circuit boards to organic bromine: reaction mechanism and comprehensive recovery. Li C; Liu C; Xia H; Zhang L; Liu D; Shu B Environ Sci Pollut Res Int; 2023 Oct; 30(49):108288-108300. PubMed ID: 37743446 [TBL] [Abstract][Full Text] [Related]
12. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Charitopoulou MA; Kalogiannis KG; Lappas AA; Achilias DS Environ Sci Pollut Res Int; 2021 Nov; 28(42):59190-59213. PubMed ID: 32638300 [TBL] [Abstract][Full Text] [Related]
13. Oxidative and pyrolytic decomposition of an evaporated stream of 2,4,6-tribromophenol over hematite: A prevailing scenario during thermal recycling of e-waste. Ali L; Shafi Kuttiyathil M; Altarawneh M Waste Manag; 2022 Dec; 154():283-292. PubMed ID: 36308795 [TBL] [Abstract][Full Text] [Related]
14. Eight novel brominated flame retardants in indoor and outdoor dust samples from the E-waste recycling industrial park: Implications for human exposure. Lan Y; Liu Y; Cai Y; Du Q; Zhu H; Tu H; Xue J; Cheng Z Environ Res; 2023 Dec; 238(Pt 1):117172. PubMed ID: 37729961 [TBL] [Abstract][Full Text] [Related]
15. From e-waste to living space: Flame retardants contaminating household items add to concern about plastic recycling. Liu M; Brandsma SH; Schreder E Chemosphere; 2024 Oct; 365():143319. PubMed ID: 39271080 [TBL] [Abstract][Full Text] [Related]
16. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant. Morf LS; Tremp J; Gloor R; Huber Y; Stengele M; Zennegg M Environ Sci Technol; 2005 Nov; 39(22):8691-9. PubMed ID: 16323764 [TBL] [Abstract][Full Text] [Related]
17. Environmental occurrence of emerging and legacy brominated flame retardants near suspected sources in Norway. Nyholm JR; Grabic R; Arp HP; Moskeland T; Andersson PL Sci Total Environ; 2013 Jan; 443():307-14. PubMed ID: 23201697 [TBL] [Abstract][Full Text] [Related]
18. Bioaccumulation of novel brominated flame retardants in crucian carp (Carassius auratus): Implications for electronic waste recycling area monitoring. Wang Z; Jia H; Jiang Y; Cui S; Li YF Environ Res; 2023 Dec; 239(Pt 2):117412. PubMed ID: 37839535 [TBL] [Abstract][Full Text] [Related]
19. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market. Puype F; Samsonek J; Knoop J; Egelkraut-Holtus M; Ortlieb M Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(3):410-26. PubMed ID: 25599136 [TBL] [Abstract][Full Text] [Related]
20. Electron Beam Processing as a Promising Tool to Decontaminate Polymers Containing Brominated Flame Retardants. Benmammar RK; Mundlapati VR; Bouberka Z; Barrera A; Staelens JN; Tahon JF; Ziskind M; Carpentier Y; Focsa C; Supiot P; Foissac C; Maschke U Molecules; 2023 Nov; 28(23):. PubMed ID: 38067482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]