These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37606848)

  • 1. Enlarged DNA unwinding by Nme2Cas9 permits a broadened base editing window beyond the protospacer.
    Chen Z; Li X; Zhang Q; Sun W; Song X; Zhang X; Huang X; Sun B
    Sci China Life Sci; 2024 Feb; 67(2):424-427. PubMed ID: 37606848
    [No Abstract]   [Full Text] [Related]  

  • 2. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope.
    Bamidele N; Zhang H; Dong X; Cheng H; Gaston N; Feinzig H; Cao H; Kelly K; Watts JK; Xie J; Gao G; Sontheimer EJ
    Nat Commun; 2024 Feb; 15(1):1458. PubMed ID: 38368418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered domain-inlaid Nme2Cas9 adenine base editors with increased on-target DNA editing and targeting scope.
    Zhao D; Gao X; Zhou J; Li J; Qian Y; Wang D; Niu W; Zhang T; Hu M; Xiong H; Lai L; Li Z
    BMC Biol; 2023 Nov; 21(1):250. PubMed ID: 37946200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice.
    Negishi K; Kaya H; Abe K; Hara N; Saika H; Toki S
    Plant Biotechnol J; 2019 Aug; 17(8):1476-1478. PubMed ID: 30959555
    [No Abstract]   [Full Text] [Related]  

  • 6. CRISPR/Sc
    Ma G; Kuang Y; Lu Z; Li X; Xu Z; Ren B; Zhou X; Zhou H
    J Integr Plant Biol; 2021 Sep; 63(9):1606-1610. PubMed ID: 34427973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming PAM antennae for efficient CRISPR-Cas9 DNA editing.
    Wang F; Hao Y; Li Q; Li J; Zhang H; Zhang X; Wang L; Bustamante C; Fan C
    Sci Adv; 2020 May; 6(19):eaay9948. PubMed ID: 32494703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAM-Less CRISPR-SpRY Genome Editing in Plants.
    Sretenovic S; Tang X; Ren Q; Zhang Y; Qi Y
    Methods Mol Biol; 2023; 2653():3-19. PubMed ID: 36995616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a.
    Jeon Y; Choi YH; Jang Y; Yu J; Goo J; Lee G; Jeong YK; Lee SH; Kim IS; Kim JS; Jeong C; Lee S; Bae S
    Nat Commun; 2018 Jul; 9(1):2777. PubMed ID: 30018371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL; O'Reilly D; Rohilla KJ; Damha MJ; Gagnon KT
    Nucleic Acid Ther; 2019 Jun; 29(3):136-147. PubMed ID: 30990769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ScCas9
    Liu T; Zeng D; Zheng Z; Lin Z; Xue Y; Li T; Xie X; Ma G; Liu YG; Zhu Q
    J Integr Plant Biol; 2021 Sep; 63(9):1611-1619. PubMed ID: 34411422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shooting the messenger: RNA-targetting CRISPR-Cas systems.
    Zhu Y; Klompe SE; Vlot M; van der Oost J; Staals RHJ
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29748239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and Characterization of Novel Type V Cas12f Nucleases with Diverse Protospacer Adjacent Motif Preferences.
    Sharrar A; Arake de Tacca L; Collingwood T; Meacham Z; Rabuka D; Staples-Ager J; Schelle M
    CRISPR J; 2023 Aug; 6(4):350-358. PubMed ID: 37267210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Accurate Microbial Genome-Editing CRISPR Technologies.
    Lee HJ; Lee SJ
    J Microbiol Biotechnol; 2021 Jul; 31(7):903-911. PubMed ID: 34261850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.
    Jiang W; Feng S; Huang S; Yu W; Li G; Yang G; Liu Y; Zhang Y; Zhang L; Hou Y; Chen J; Chen J; Huang X
    Cell Res; 2018 Aug; 28(8):855-861. PubMed ID: 29875396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli.
    Shelake RM; Pramanik D; Kim JY
    mBio; 2023 Feb; 14(1):e0229622. PubMed ID: 36625577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prime Editing: A Novel Cas9-Reverse Transcriptase Fusion May Revolutionize Genome Editing.
    Flotte TR; Gao G
    Hum Gene Ther; 2019 Dec; 30(12):1445-1446. PubMed ID: 31860398
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.