BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37606993)

  • 1. MSDRP: a deep learning model based on multisource data for predicting drug response.
    Zhao H; Zhang X; Zhao Q; Li Y; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A similarity-based deep learning approach for determining the frequencies of drug side effects.
    Zhao H; Wang S; Zheng K; Zhao Q; Zhu F; Wang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multimodal deep learning framework for predicting drug-drug interaction events.
    Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S
    Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting synergistic anticancer drug combination based on low-rank global attention mechanism and bilinear predictor.
    Gan Y; Huang X; Guo W; Yan C; Zou G
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37812255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for drug response prediction in cancer cell lines via network representation learning.
    Yang J; Li A; Li Y; Guo X; Wang M
    Bioinformatics; 2019 May; 35(9):1527-1535. PubMed ID: 30304378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repositioning through integration of prior knowledge and projections of drugs and diseases.
    Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T
    Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of drug side effects with transductive matrix co-completion.
    Liang X; Fu Y; Qu L; Zhang P; Chen Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity.
    Rohani N; Eslahchi C
    Sci Rep; 2019 Sep; 9(1):13645. PubMed ID: 31541145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores.
    El Khili MR; Memon SA; Emad A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37021933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity.
    Wei H; Gao L; Wu S; Jiang Y; Liu B
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38715444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.