These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37607049)
1. Enhancing Temperature Adaptability of Aqueous Zinc Batteries via Antifreezing Electrolyte and Site-Selective ZnSe-Ag Interface Layer Design. Xue R; Zou Y; Wang Z; Mao L; Wang H; Zhang M; Shao A; Liu J; Yao N; Liu Y; Ma Y ACS Nano; 2023 Sep; 17(17):17359-17371. PubMed ID: 37607049 [TBL] [Abstract][Full Text] [Related]
2. ZnSe Modified Zinc Metal Anodes: Toward Enhanced Zincophilicity and Ionic Diffusion. Li TC; Lim YV; Xie X; Li XL; Li G; Fang D; Li Y; Ang YS; Ang LK; Yang HY Small; 2021 Sep; 17(35):e2101728. PubMed ID: 34278715 [TBL] [Abstract][Full Text] [Related]
3. Superfast Zincophilic Ion Conductor Enables Rapid Interfacial Desolvation Kinetics for Low-Temperature Zinc Metal Batteries. Cheng X; Zuo Y; Zhang Y; Zhao X; Jia L; Zhang J; Li X; Wu Z; Wang J; Lin H Adv Sci (Weinh); 2024 Jul; 11(28):e2401629. PubMed ID: 38721863 [TBL] [Abstract][Full Text] [Related]
4. Alkaline Tolerant Antifreezing Additive Enabling Aqueous Zn||Ni Battery Operating at -60 °C. Chen S; Peng C; Xue D; Ma L; Zhi C Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212767. PubMed ID: 36207809 [TBL] [Abstract][Full Text] [Related]
5. Ionic liquid-integrated aqueous electrolyte regulation on solvation chemistry and electrode interface for reversible dendrite-free zinc anodes. Guo HJ; Chen XJ; Shu R; Zhong XB; Zhang LX; Song YX J Colloid Interface Sci; 2025 Jan; 678(Pt A):627-636. PubMed ID: 39216390 [TBL] [Abstract][Full Text] [Related]
6. Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. Wang A; Zhou W; Huang A; Chen M; Tian Q; Chen J J Colloid Interface Sci; 2021 Mar; 586():362-370. PubMed ID: 33148452 [TBL] [Abstract][Full Text] [Related]
7. Highly Stable Aqueous/Organic Hybrid Zinc-Ion Batteries Based on a Synergistic Cathode/Anode Interface Engineering. Zhou J; Wu F; Mei Y; Ma W; Li L; Chen R ACS Nano; 2024 Jan; 18(1):839-848. PubMed ID: 38108612 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Zn Jiang T; Xue R; Chen Y; Tang K; Shang J; Ge Y; Qi W; Qi Z; Ma Y Small; 2024 Nov; 20(46):e2405009. PubMed ID: 39106215 [TBL] [Abstract][Full Text] [Related]
9. Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries. Huang S; Hou L; Li T; Jiao Y; Wu P Adv Mater; 2022 Apr; 34(14):e2110140. PubMed ID: 35122340 [TBL] [Abstract][Full Text] [Related]
10. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Dong Y; Miao L; Ma G; Di S; Wang Y; Wang L; Xu J; Zhang N Chem Sci; 2021 Mar; 12(16):5843-5852. PubMed ID: 34168809 [TBL] [Abstract][Full Text] [Related]
11. A Dual Salt/Dual Solvent Electrolyte Enables Ultrahigh Utilization of Zinc Metal Anode for Aqueous Batteries. Guan K; Chen W; Yang Y; Ye F; Hong Y; Zhang J; Gu Q; Wu Y; Hu L Adv Mater; 2024 Sep; 36(38):e2405889. PubMed ID: 39054923 [TBL] [Abstract][Full Text] [Related]
12. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte. Liu Z; Pulletikurthi G; Endres F ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430 [TBL] [Abstract][Full Text] [Related]
13. Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Li C; Kingsbury R; Thind AS; Shyamsunder A; Fister TT; Klie RF; Persson KA; Nazar LF Nat Commun; 2023 May; 14(1):3067. PubMed ID: 37244907 [TBL] [Abstract][Full Text] [Related]
14. Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Wang J; Zhang B; Cai Z; Zhan R; Wang W; Fu L; Wan M; Xiao R; Ou Y; Wang L; Jiang J; Seh ZW; Li H; Sun Y Sci Bull (Beijing); 2022 Apr; 67(7):716-724. PubMed ID: 36546136 [TBL] [Abstract][Full Text] [Related]
15. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836 [TBL] [Abstract][Full Text] [Related]
16. Dual-Parasitic Effect Enables Highly Reversible Zn Metal Anode for Ultralong 25,000 Cycles Aqueous Zinc-Ion Batteries. Ma C; Wang X; Lu W; Yang K; Chen N; Jiang H; Wang C; Yue H; Zhang D; Du F Nano Lett; 2024 Apr; 24(13):4020-4028. PubMed ID: 38517395 [TBL] [Abstract][Full Text] [Related]
17. Crystal Orientation Engineering of Perfectly Matched Heterogeneous Textured ZnSe for an Enhanced Interfacial Kinetic Zn Anode. Li Q; Hong H; Zhu J; Wu Z; Li C; Wang D; Li P; Zhao Y; Hou Y; Liang G; Mo F; Cui H; Zhi C ACS Nano; 2023 Dec; 17(23):23805-23813. PubMed ID: 38033247 [TBL] [Abstract][Full Text] [Related]
18. Bidentate Coordination Enables Anions-Regulated Solvation Structure for Advanced Aqueous Zinc Metal Batteries. Wang D; Li R; Dong J; Bai Z; Wang N; Dou SX; Yang J Angew Chem Int Ed Engl; 2024 Sep; ():e202414117. PubMed ID: 39315791 [TBL] [Abstract][Full Text] [Related]
19. Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes. Cao L; Li D; Soto FA; Ponce V; Zhang B; Ma L; Deng T; Seminario JM; Hu E; Yang XQ; Balbuena PB; Wang C Angew Chem Int Ed Engl; 2021 Aug; 60(34):18845-18851. PubMed ID: 34196094 [TBL] [Abstract][Full Text] [Related]
20. Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries. Jin T; Ye X; Chen Z; Bai S; Zhang Y ACS Appl Mater Interfaces; 2024 Jan; 16(4):4729-4740. PubMed ID: 38234248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]