These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37607147)

  • 1. TransRNAm: Identifying Twelve Types of RNA Modifications by an Interpretable Multi-Label Deep Learning Model Based on Transformer.
    Chen T; Wu T; Pan D; Xie J; Zhi J; Wang X; Quan L; Lyu Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3623-3634. PubMed ID: 37607147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications.
    Song Z; Huang D; Song B; Chen K; Song Y; Liu G; Su J; Magalhães JP; Rigden DJ; Meng J
    Nat Commun; 2021 Jun; 12(1):4011. PubMed ID: 34188054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSCAN: multi-scale self- and cross-attention network for RNA methylation site prediction.
    Wang H; Huang T; Wang D; Zeng W; Sun Y; Zhang L
    BMC Bioinformatics; 2024 Jan; 25(1):32. PubMed ID: 38233745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rm-LR: A long-range-based deep learning model for predicting multiple types of RNA modifications.
    Liang S; Zhao Y; Jin J; Qiao J; Wang D; Wang Y; Wei L
    Comput Biol Med; 2023 Sep; 164():107238. PubMed ID: 37515874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRM-BERT: a novel deep neural network predictor of multiple RNA modifications by fusing BERT representation and sequence features.
    Wang L; Zhou Y
    RNA Biol; 2024 Jan; 21(1):1-10. PubMed ID: 38357904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MFTrans: A multi-feature transformer network for protein secondary structure prediction.
    Chen Y; Chen G; Chen CY
    Int J Biol Macromol; 2024 May; 267(Pt 1):131311. PubMed ID: 38599417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention Mechanisms for Identifying 5-methylcytosine Sites in Human RNA.
    Jia J; Qin L; Lei R
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):346. PubMed ID: 38179749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA-CLA: An interpretable deep learning approach for predicting mRNA subcellular localization.
    Chen Y; Du Z; Ren X; Pan C; Zhu Y; Li Z; Meng T; Yao X
    Methods; 2024 Jul; 227():17-26. PubMed ID: 38705502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition.
    Cheriet M; Dentamaro V; Hamdan M; Impedovo D; Pirlo G
    Comput Methods Programs Biomed; 2023 Mar; 230():107344. PubMed ID: 36706617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone Sensor-Based Human Motion Characterization with Neural Stochastic Differential Equations and Transformer Model.
    Lee J; Kim T; Park J; Park J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BERT2OME: Prediction of 2'-O-Methylation Modifications From RNA Sequence by Transformer Architecture Based on BERT.
    Soylu NN; Sefer E
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2177-2189. PubMed ID: 37819796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture.
    Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretable Multi-Scale Deep Learning for RNA Methylation Analysis across Multiple Species.
    Wang R; Chung CR; Lee TY
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA.
    Pham NT; Rakkiyapan R; Park J; Malik A; Manavalan B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38180830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of species-specific RNA N6-methyladinosine modification sites from RNA sequences.
    Wang R; Chung CR; Huang HD; Lee TY
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.