These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37607471)

  • 1. Decoupling Activation and Transport by Electron-Regulated Atomic-Bi Harnessed Surface-to-Pore Interface for Vanadium Redox Flow Battery.
    Zhang X; Valencia A; Li W; Ao K; Shi J; Yue X; Zhang R; Daoud WA
    Adv Mater; 2024 Feb; 36(6):e2305415. PubMed ID: 37607471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting Pore-Level Mass Transport/Reaction in Flow Batteries: Bi Nanodot/Vertically Standing Carbon Nanosheet Composites on Carbon Fibers.
    Zhang X; Ye X; Huang S; Zhou X
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37111-37122. PubMed ID: 34320807
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Park SJ; Hong MJ; Ha YJ; Choi JI; Kim KJ
    Sci Technol Adv Mater; 2024; 25(1):2327274. PubMed ID: 38529018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.
    Li B; Gu M; Nie Z; Shao Y; Luo Q; Wei X; Li X; Xiao J; Wang C; Sprenkle V; Wang W
    Nano Lett; 2013 Mar; 13(3):1330-5. PubMed ID: 23398147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries.
    Duburg JC; Azizi K; Primdahl S; Hjuler HA; Zanzola E; Schmidt TJ; Gubler L
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Growth of Amorphous MnO
    Huangyang X; Wang H; Zhou W; Deng Q; Liu Z; Zeng XX; Wu X; Ling W
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32189-32197. PubMed ID: 38870428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced electrode enabled by lignin-derived carbon for high-performance vanadium redox flow battery.
    He X; Li L; Yan S; Fu H; Zhong F; Cao J; Ding M; Sun Q; Jia C
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1455-1463. PubMed ID: 37804614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium Redox Flow Battery Using Activated Carbon Catalyst Produced from Low-Density Polyethylene.
    Lim H; Shin M; Phae CG; Kwon Y
    Chem Asian J; 2022 Nov; 17(22):e202200754. PubMed ID: 36089852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO
    Li W; Zhang Z; Tang Y; Bian H; Ng TW; Zhang W; Lee CS
    Adv Sci (Weinh); 2016 Apr; 3(4):1500276. PubMed ID: 27774399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the effect of thermal treatment and catalyst introduction on electrode performance in vanadium redox flow battery.
    Dai G; Huang Y; Chu F; Jin C; Liu H
    Heliyon; 2024 Jul; 10(13):e33561. PubMed ID: 39035514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holey aligned electrodes through in-situ ZIF-8-assisted-etching for high-performance aqueous redox flow batteries.
    Sun J; Jiang H; Zhao C; Fan X; Chao C; Zhao T
    Sci Bull (Beijing); 2021 May; 66(9):904-913. PubMed ID: 36654239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binder-Free CNT-Modified Excellent Electrodes for All-Vanadium Redox Flow Batteries.
    Devi N; Singh P; Chen YS
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable Carbon Felt Etching by Binary Nickel Bismuth Cluster for Vanadium-Manganese Redox Flow Batteries.
    Park J; Kim M; Choi J; Lee S; Han D; Bae J; Park M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37390-37400. PubMed ID: 37498204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Reactant Distribution in Redox Flow Cells.
    Gurieff N; Keogh DF; Timchenko V; Menictas C
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31661797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Chemical Potential Activated Nanointerfacial Electric Field for Efficient Vanadium Redox Flow Batteries.
    Zhang X; Ye X; Valencia A; Liu F; Ao K; Yue X; Shi J; Daoud WA; Zhou X
    ACS Nano; 2023 Nov; 17(21):21799-21812. PubMed ID: 37862692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery.
    Park M; Jung YJ; Kim J; Lee Hi; Cho J
    Nano Lett; 2013 Oct; 13(10):4833-9. PubMed ID: 24024628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Modification of Carbonous Felt as an Electrode for Vanadium Redox Flow Batteries.
    Ding C; Shen Z; Zhu Y; Cheng Y
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries.
    Li Q; Bai A; Zhang T; Li S; Sun H
    R Soc Open Sci; 2020 Jul; 7(7):200402. PubMed ID: 32874635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review.
    Düerkop D; Widdecke H; Schilde C; Kunz U; Schmiemann A
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33803681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore engineering of graphene aerogels for vanadium redox flow batteries.
    Yang Y; Ma W; Zhang T; Ye D; Chen R; Zhu X
    Chem Commun (Camb); 2020 Dec; 56(95):14984-14987. PubMed ID: 33150342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.