These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37607554)

  • 1. MRI magnitude signal-based proton beam visualisation in water phantoms reflects composite effects of beam-induced buoyant convection and radiation chemistry.
    Schieferecke J; Gantz S; Karsch L; Pawelke J; Hoffmann A
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37607554
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of contrast mechanisms for MRI phase signal-based proton beam visualization in water phantoms.
    Schieferecke J; Gantz S; Hoffmann A; Pawelke J
    Magn Reson Med; 2023 Nov; 90(5):1776-1788. PubMed ID: 37345700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI of radiation chemistry: First images and investigation of potential mechanisms.
    Wancura J; Egan J; Sajo E; Sudhyadhom A
    Med Phys; 2023 Jan; 50(1):495-505. PubMed ID: 36201151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of magnetic interference and image artefacts during simultaneous in-beam MR imaging and proton pencil beam scanning.
    Gantz S; Hietschold V; Hoffmann AL
    Phys Med Biol; 2020 Nov; 65(21):215014. PubMed ID: 33151908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategy to prevent a temperature-induced MRI artifact in warm liquid phantoms due to convection currents.
    Oglesby RT; Lam WW; Stanisz GJ
    NMR Biomed; 2021 Jun; 34(6):e4494. PubMed ID: 33586271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of sub-zero temperatures in MRI using T
    Hankiewicz JH; Celinski Z; Camley RE
    Med Phys; 2021 Nov; 48(11):6844-6858. PubMed ID: 34562287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating a low-field open MR scanner with a static proton research beam line: proof of concept.
    Schellhammer SM; Hoffmann AL; Gantz S; Smeets J; van der Kraaij E; Quets S; Pieck S; Karsch L; Pawelke J
    Phys Med Biol; 2018 Nov; 63(23):23LT01. PubMed ID: 30465549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct visualization of proton beam irradiation effects in liquids by MRI.
    Gantz S; Karsch L; Pawelke J; Schieferecke J; Schellhammer S; Smeets J; van der Kraaij E; Hoffmann A
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2301160120. PubMed ID: 37252953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations.
    Odéen H; Parker DL
    Prog Nucl Magn Reson Spectrosc; 2019 Feb; 110():34-61. PubMed ID: 30803693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intradiscal temperature monitoring using double gradient-echo pulse sequences at 1.0T.
    Wonneberger U; Schnackenburg B; Wlodarczyk W; Walter T; Streitparth F; Rump J; Teichgräber UK
    J Magn Reson Imaging; 2010 Jun; 31(6):1499-503. PubMed ID: 20512906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [MR temperature monitoring by the proton phase shift (PPS) method with a 0.3T open-type MR scanner: experimental study].
    Dohi M; Miida K; Harada J; Komura K; Takahashi T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1999 Nov; 59(13):788-90. PubMed ID: 10614111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation induced contrast enhancement after proton beam therapy in patients with low grade glioma - How safe are protons?
    Harrabi SB; von Nettelbladt B; Gudden C; Adeberg S; Seidensaal K; Bauer J; Bahn E; Mairani A; Alber M; Haberer T; Debus J; Herfarth K
    Radiother Oncol; 2022 Feb; 167():211-218. PubMed ID: 34973277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton beam behavior in a parallel configured MRI-proton therapy hybrid: Effects of time-varying gradient magnetic fields.
    Santos DM; Wachowicz K; Burke B; Fallone BG
    Med Phys; 2019 Feb; 46(2):822-838. PubMed ID: 30488968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionoacoustic application of an optical hydrophone to detect proton beam range in water.
    Sueyasu S; Takayanagi T; Miyazaki K; Kuriyama Y; Ishi Y; Uesugi T; Unlu MB; Kudo N; Chen Y; Kasamatsu K; Fujii M; Kobayashi M; Rohringer W; Matsuura T
    Med Phys; 2023 Apr; 50(4):2438-2449. PubMed ID: 36565440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical Note: Range verification of pulsed proton beams from fixed-field alternating gradient accelerator by means of time-of-flight measurement of ionoacoustic waves.
    Nakamura Y; Takayanagi T; Uesaka T; Unlu MB; Kuriyama Y; Ishi Y; Uesugi T; Kobayashi M; Kudo N; Tanaka S; Umegaki K; Tomioka S; Matsuura T
    Med Phys; 2021 Sep; 48(9):5490-5500. PubMed ID: 34173991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prototype phantoms for characterization of ultralow field magnetic resonance imaging.
    Boss MA; Mates JA; Busch SE; SanGiorgio P; Russek SE; Buckenmaier K; Irwin KD; Cho HM; Hilton GC; Clarke J
    Magn Reson Med; 2014 Dec; 72(6):1793-800. PubMed ID: 24281979
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.