These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 37607610)
1. Multi-part strategy for testing differential taxa abundance in sequencing data: A simulation study with an application to a microbiome study. Cianci D; Tims S; Roeselers G; El Galta R; Swinkels S J Microbiol Methods; 2023 Sep; 212():106810. PubMed ID: 37607610 [TBL] [Abstract][Full Text] [Related]
2. Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ). Ling W; Zhao N; Plantinga AM; Launer LJ; Fodor AA; Meyer KA; Wu MC Microbiome; 2021 Sep; 9(1):181. PubMed ID: 34474689 [TBL] [Abstract][Full Text] [Related]
3. MarZIC: A Marginal Mediation Model for Zero-Inflated Compositional Mediators with Applications to Microbiome Data. Wu Q; O'Malley J; Datta S; Gharaibeh RZ; Jobin C; Karagas MR; Coker MO; Hoen AG; Christensen BC; Madan JC; Li Z Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741811 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis. Banerjee K; Zhao N; Srinivasan A; Xue L; Hicks SD; Middleton FA; Wu R; Zhan X Front Genet; 2019; 10():350. PubMed ID: 31068967 [TBL] [Abstract][Full Text] [Related]
6. Transformation and differential abundance analysis of microbiome data incorporating phylogeny. Zhou C; Zhao H; Wang T Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462 [TBL] [Abstract][Full Text] [Related]
7. A strategy for differential abundance analysis of sparse microbiome data with group-wise structured zeros. Abegaz F; Abedini D; White F; Guerrieri A; Zancarini A; Dong L; Westerhuis JA; van Eeuwijk F; Bouwmeester H; Smilde AK Sci Rep; 2024 May; 14(1):12433. PubMed ID: 38816496 [TBL] [Abstract][Full Text] [Related]
8. Normalization and microbial differential abundance strategies depend upon data characteristics. Weiss S; Xu ZZ; Peddada S; Amir A; Bittinger K; Gonzalez A; Lozupone C; Zaneveld JR; Vázquez-Baeza Y; Birmingham A; Hyde ER; Knight R Microbiome; 2017 Mar; 5(1):27. PubMed ID: 28253908 [TBL] [Abstract][Full Text] [Related]
9. Comparative Analysis of Core Microbiome Assignments: Implications for Ecological Synthesis. Custer GF; Gans M; van Diepen LTA; Dini-Andreote F; Buerkle CA mSystems; 2023 Feb; 8(1):e0106622. PubMed ID: 36744955 [TBL] [Abstract][Full Text] [Related]
10. A realistic benchmark for differential abundance testing and confounder adjustment in human microbiome studies. Wirbel J; Essex M; Forslund SK; Zeller G Genome Biol; 2024 Sep; 25(1):247. PubMed ID: 39322959 [TBL] [Abstract][Full Text] [Related]
11. Comparison study of differential abundance testing methods using two large Parkinson disease gut microbiome datasets derived from 16S amplicon sequencing. Wallen ZD BMC Bioinformatics; 2021 May; 22(1):265. PubMed ID: 34034646 [TBL] [Abstract][Full Text] [Related]
12. An adaptive direction-assisted test for microbiome compositional data. Zhang W; Liu A; Zhang Z; Chen G; Li Q Bioinformatics; 2022 Jul; 38(14):3493-3500. PubMed ID: 35640978 [TBL] [Abstract][Full Text] [Related]
13. A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses. Li Z; Yu X; Guo H; Lee T; Hu J Front Cell Infect Microbiol; 2022; 12():988717. PubMed ID: 36389165 [TBL] [Abstract][Full Text] [Related]
14. An omnibus test for differential distribution analysis of microbiome sequencing data. Chen J; King E; Deek R; Wei Z; Yu Y; Grill D; Ballman K; Stegle O Bioinformatics; 2018 Feb; 34(4):643-651. PubMed ID: 29040451 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. Yang L; Chen J Microbiome; 2022 Aug; 10(1):130. PubMed ID: 35986393 [TBL] [Abstract][Full Text] [Related]
16. An adaptive independence test for microbiome community data. Song Y; Zhao H; Wang T Biometrics; 2020 Jun; 76(2):414-426. PubMed ID: 31538660 [TBL] [Abstract][Full Text] [Related]
17. metamicrobiomeR: an R package for analysis of microbiome relative abundance data using zero-inflated beta GAMLSS and meta-analysis across studies using random effects models. Ho NT; Li F; Wang S; Kuhn L BMC Bioinformatics; 2019 Apr; 20(1):188. PubMed ID: 30991942 [TBL] [Abstract][Full Text] [Related]
18. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Chen EZ; Li H Bioinformatics; 2016 Sep; 32(17):2611-7. PubMed ID: 27187200 [TBL] [Abstract][Full Text] [Related]
19. Impact of Experimental Bias on Compositional Analysis of Microbiome Data. Hu Y; Satten GA; Hu YJ Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761917 [TBL] [Abstract][Full Text] [Related]
20. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]