BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37607817)

  • 1. KCNQ2/3 Gain-of-Function Variants and Cell Excitability: Differential Effects in CA1 versus L2/3 Pyramidal Neurons.
    Varghese N; Moscoso B; Chavez A; Springer K; Ortiz E; Soh H; Santaniello S; Maheshwari A; Tzingounis AV
    J Neurosci; 2023 Sep; 43(38):6479-6494. PubMed ID: 37607817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epilepsy-Associated KCNQ2 Channels Regulate Multiple Intrinsic Properties of Layer 2/3 Pyramidal Neurons.
    Niday Z; Hawkins VE; Soh H; Mulkey DK; Tzingounis AV
    J Neurosci; 2017 Jan; 37(3):576-586. PubMed ID: 28100740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability.
    Soh H; Pant R; LoTurco JJ; Tzingounis AV
    J Neurosci; 2014 Apr; 34(15):5311-21. PubMed ID: 24719109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization.
    Singh NA; Otto JF; Dahle EJ; Pappas C; Leslie JD; Vilaythong A; Noebels JL; White HS; Wilcox KS; Leppert MF
    J Physiol; 2008 Jul; 586(14):3405-23. PubMed ID: 18483067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders.
    Springer K; Varghese N; Tzingounis AV
    Dev Neurosci; 2021; 43(3-4):191-200. PubMed ID: 33794528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCNQ2 and KCNQ5 form heteromeric channels independent of KCNQ3.
    Soh H; Springer K; Doci K; Balsbaugh JL; Tzingounis AV
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2117640119. PubMed ID: 35320039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional responses of the hippocampus to hyperexcitability depend on directed, neuron-specific KCNQ2 K
    Carver CM; Hastings SD; Cook ME; Shapiro MS
    Hippocampus; 2020 May; 30(5):435-455. PubMed ID: 31621989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of KCNQ2 or KCNQ3 Leads to Multifocal Time-Varying Activity in the Neonatal Forebrain
    Hou B; Varghese N; Soh H; Santaniello S; Tzingounis AV
    eNeuro; 2021; 8(3):. PubMed ID: 33863780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KCNQ3 is the principal target of retigabine in CA1 and subicular excitatory neurons.
    Varghese N; Lauritano A; Taglialatela M; Tzingounis AV
    J Neurophysiol; 2021 Apr; 125(4):1440-1449. PubMed ID: 33729829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy.
    Li J; Maghera J; Lamothe SM; Marco EJ; Kurata HT
    Mol Pharmacol; 2020 Sep; 98(3):192-202. PubMed ID: 32580997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits.
    Miceli F; Soldovieri MV; Ambrosino P; De Maria M; Migliore M; Migliore R; Taglialatela M
    J Neurosci; 2015 Mar; 35(9):3782-93. PubMed ID: 25740509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells.
    Carver CM; Shapiro MS
    J Neurosci; 2019 Feb; 39(9):1566-1587. PubMed ID: 30593498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular correlates of the M-current in cultured rat hippocampal neurons.
    Shah M; Mistry M; Marsh SJ; Brown DA; Delmas P
    J Physiol; 2002 Oct; 544(Pt 1):29-37. PubMed ID: 12356878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment.
    Rasmussen HB; Frøkjaer-Jensen C; Jensen CS; Jensen HS; Jørgensen NK; Misonou H; Trimmer JS; Olesen SP; Schmitt N
    J Cell Sci; 2007 Mar; 120(Pt 6):953-63. PubMed ID: 17311847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents.
    Tzingounis AV; Nicoll RA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19974-9. PubMed ID: 19060215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-limited alterations in cortical activity of a knock-in mouse model of KCNQ2-related developmental and epileptic encephalopathy.
    Biba-Maazou N; Becq H; Pallesi-Pocachard E; Sarno S; Granjeaud S; Montheil A; Kurz M; Villard L; Milh M; Santini PL; Aniksztejn L
    J Physiol; 2022 May; 600(10):2429-2460. PubMed ID: 35389519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autism and developmental disability caused by KCNQ3 gain-of-function variants.
    Sands TT; Miceli F; Lesca G; Beck AE; Sadleir LG; Arrington DK; Schönewolf-Greulich B; Moutton S; Lauritano A; Nappi P; Soldovieri MV; Scheffer IE; Mefford HC; Stong N; Heinzen EL; Goldstein DB; Perez AG; Kossoff EH; Stocco A; Sullivan JA; Shashi V; Gerard B; Francannet C; Bisgaard AM; Tümer Z; Willems M; Rivier F; Vitobello A; Thakkar K; Rajan DS; Barkovich AJ; Weckhuysen S; Cooper EC; Taglialatela M; Cilio MR
    Ann Neurol; 2019 Aug; 86(2):181-192. PubMed ID: 31177578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC).
    Bassi MT; Balottin U; Panzeri C; Piccinelli P; Castaldo P; Barrese V; Soldovieri MV; Miceli F; Colombo M; Bresolin N; Borgatti R; Taglialatela M
    Neurogenetics; 2005 Dec; 6(4):185-93. PubMed ID: 16235065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes.
    Neubauer BA; Waldegger S; Heinzinger J; Hahn A; Kurlemann G; Fiedler B; Eberhard F; Muhle H; Stephani U; Garkisch S; Eeg-Olofsson O; Müller U; Sander T
    Neurology; 2008 Jul; 71(3):177-83. PubMed ID: 18625963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons.
    Otto JF; Yang Y; Frankel WN; White HS; Wilcox KS
    J Neurosci; 2006 Feb; 26(7):2053-9. PubMed ID: 16481438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.