These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37608049)
1. Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach. Algehyne EA; Saeed A; Arif M; Bilal M; Kumam P; Galal AM Sci Rep; 2023 Aug; 13(1):13675. PubMed ID: 37608049 [TBL] [Abstract][Full Text] [Related]
2. Numerical simulation of the nanofluid flow consists of gyrotactic microorganism and subject to activation energy across an inclined stretching cylinder. A Othman H; Ali B; Jubair S; Yahya Almusawa M; M Aldin S Sci Rep; 2023 May; 13(1):7719. PubMed ID: 37173459 [TBL] [Abstract][Full Text] [Related]
3. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Khan MS; Mei S; Shabnam ; Ali Shah N; Chung JD; Khan A; Shah SA Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214989 [TBL] [Abstract][Full Text] [Related]
4. A numerical study of heat and mass transfer characteristic of three-dimensional thermally radiated bi-directional slip flow over a permeable stretching surface. Ullah H; Abas SA; Fiza M; Khan I; Rahimzai AA; Akgul A Sci Rep; 2024 Aug; 14(1):19842. PubMed ID: 39191851 [TBL] [Abstract][Full Text] [Related]
5. New insight into the dynamics of non-Newtonian Powell-Eyring fluid conveying tiny particles on Riga plate with suction and injection. Shah SAA; Alanazi MM; Malik MF; Abbas Z Nanotechnology; 2023 Jun; 34(34):. PubMed ID: 37201509 [TBL] [Abstract][Full Text] [Related]
6. Gyrotactic micro-organism flow of Maxwell nanofluid between two parallel plates. Xu YJ; Bilal M; Al-Mdallal Q; Khan MA; Muhammad T Sci Rep; 2021 Jul; 11(1):15142. PubMed ID: 34312440 [TBL] [Abstract][Full Text] [Related]
7. Cattaneo-Christov Double Diffusion (CCDD) on Sutterby Nanofluid with Irreversibility Analysis and Motile Microbes Due to a RIGA Plate. Ahmed MF; Zaib A; Ali F; Bafakeeh OT; Khan NB; Mohamed Tag-ElDin ES; Oreijah M; Guedri K; Galal AM Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144120 [TBL] [Abstract][Full Text] [Related]
9. Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions. Ramzan M; Dawar A; Saeed A; Kumam P; Watthayu W; Kumam W PLoS One; 2021; 16(12):e0260854. PubMed ID: 34905556 [TBL] [Abstract][Full Text] [Related]
10. Entropy optimization and heat transfer analysis in MHD Williamson nanofluid flow over a vertical Riga plate with nonlinear thermal radiation. Rooman M; Jan MA; Shah Z; Kumam P; Alshehri A Sci Rep; 2021 Sep; 11(1):18386. PubMed ID: 34526593 [TBL] [Abstract][Full Text] [Related]
11. Computational Assessment of Microrotation and Buoyancy Effects on the Stagnation Point Flow of Carreau-Yasuda Hybrid Nanofluid with Chemical Reaction Past a Convectively Heated Riga Plate. Ramzan M; Javed M; Rehman S; Ahmed D; Saeed A; Kumam P ACS Omega; 2022 Aug; 7(34):30297-30312. PubMed ID: 36061703 [TBL] [Abstract][Full Text] [Related]
12. Computational Framework of Magnetized MgO-Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings. Bhatti MM; Bég OA; Abdelsalam SI Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407169 [TBL] [Abstract][Full Text] [Related]
13. Brownian Motion and Thermophoresis Effects on MHD Three Dimensional Nanofluid Flow with Slip Conditions and Joule Dissipation Due to Porous Rotating Disk. Alreshidi NA; Shah Z; Dawar A; Kumam P; Shutaywi M; Watthayu W Molecules; 2020 Feb; 25(3):. PubMed ID: 32046124 [TBL] [Abstract][Full Text] [Related]
14. Activation Energy Impact on Flow of AA7072-AA7075/Water-Based Hybrid Nanofluid through a Cone, Wedge and Plate. Rekha MB; Sarris IE; Madhukesh JK; Raghunatha KR; Prasannakumara BC Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208426 [TBL] [Abstract][Full Text] [Related]
15. Series solution of unsteady MHD oblique stagnation point flow of copper-water nanofluid flow towards Riga plate. Rizwana R; Hussain A; Nadeem S Heliyon; 2020 Oct; 6(10):e04689. PubMed ID: 33088931 [TBL] [Abstract][Full Text] [Related]
16. Numerical approach towards gyrotactic microorganisms hybrid nanoliquid flow with the hall current and magnetic field over a spinning disk. Lv YP; Algehyne EA; Alshehri MG; Alzahrani E; Bilal M; Khan MA; Shuaib M Sci Rep; 2021 Apr; 11(1):8948. PubMed ID: 33903649 [TBL] [Abstract][Full Text] [Related]
17. Non-similar bioconvective analysis of magnetized hybrid nanofluid ( Cui J; Haseena ; Farooq U; Jan A; Hussain M Heliyon; 2024 May; 10(9):e28993. PubMed ID: 38694070 [TBL] [Abstract][Full Text] [Related]
18. Unsteady micropolar nanofluid flow past a variable riga stretchable surface with variable thermal conductivity. Abbas N; Ali M; Shatanawi W; Hasan F Heliyon; 2024 Jan; 10(1):e23590. PubMed ID: 38187320 [TBL] [Abstract][Full Text] [Related]
19. Numerically analysis of Marangoni convective flow of hybrid nanofluid over an infinite disk with thermophoresis particle deposition. Abbas M; Khan N; Hashmi MS; Younis J Sci Rep; 2023 Mar; 13(1):5036. PubMed ID: 36977723 [TBL] [Abstract][Full Text] [Related]
20. Effect of non-uniform heat rise/fall and porosity on MHD Williamson hybrid nanofluid flow over incessantly moving thin needle. Abbas A; Hussanan A; Obalalu AM; Kriaa K; Maatki C; Hadrich B; Aslam M; Kolsi L Heliyon; 2024 Jan; 10(1):e23588. PubMed ID: 38187268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]