These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3760807)

  • 21. Changes of the external and internal pigment pattern upon fertilization in the egg of Xenopus laevis.
    Palecek J; Ubbels GA; Rzehak K
    J Embryol Exp Morphol; 1978 Jun; 45():203-14. PubMed ID: 566780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force.
    Black SD
    Adv Space Res; 1989; 9(11):159-68. PubMed ID: 11537329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blastopore formation in the animal hemisphere: functional inversion of gastrulation by centrifugation of Xenopus laevis eggs.
    Black SD; Crutchfield AN; Murphy MD; Swain TC
    Gravit Space Biol Bull; 1998 May; 11(2):15-21. PubMed ID: 11540634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of hetero-specific sperm-egg interactions in the rat, mouse, and deer mouse using in vitro fertilization and sperm injection.
    Thadani VM
    J Exp Zool; 1980 Jun; 212(3):435-53. PubMed ID: 7420048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis.
    Ubbels GA; Brom TG
    Adv Space Res; 1984; 4(12):9-18. PubMed ID: 11537800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis.
    Cleine JH; Dixon KE
    J Embryol Exp Morphol; 1985 Dec; 90():79-99. PubMed ID: 3834040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the organization of the amphibian egg cytoplasm: gravitational force as a probe.
    Neff AW; Wakahara M; Yokota H; Malacinski GM
    Adv Space Res; 1992; 12(1):175-80. PubMed ID: 11536955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and partial characterization of yolk and cortical granule proteins in eggs and embryos of the starfish, Pisaster ochraceus.
    Reimer CL; Crawford BJ
    Dev Biol; 1995 Feb; 167(2):439-57. PubMed ID: 7875370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The effect of fertilization on the ultrastructure of the peripheal cytoplasm of the egg of Xenopus laevis].
    Van Gansen P
    J Embryol Exp Morphol; 1966 Jun; 15(3):365-9. PubMed ID: 6007186
    [No Abstract]   [Full Text] [Related]  

  • 30. Egg components, egg size, and hatchling size in leatherback turtles.
    Wallace BP; Sotherland PR; Tomillo PS; Bouchard SS; Reina RD; Spotila JR; Paladino FV
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Dec; 145(4):524-32. PubMed ID: 17029994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversal of developmental competence in inverted amphibian eggs.
    Chung HM; Malacinski GM
    J Embryol Exp Morphol; 1983 Feb; 73():207-20. PubMed ID: 6683745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Structure of the morphogenetic movements of gastrulation in Anura. I. Destabilization of ooplasmic segregation and cleavage under the action of clinostatic rotation].
    Dorfman IaG; Cherdantsev VG
    Ontogenez; 1977; 8(3):238-50. PubMed ID: 301622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyrosine kinase-dependent activation of phospholipase Cgamma is required for calcium transient in Xenopus egg fertilization.
    Sato K; Tokmakov AA; Iwasaki T; Fukami Y
    Dev Biol; 2000 Aug; 224(2):453-69. PubMed ID: 10926780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenopus laevis embryos can establish their spatial bilateral symmetrical body pattern without gravity.
    Ubbels GA; Reijnen M; Meijerink J; Narraway J
    Adv Space Res; 1994; 14(8):257-69. PubMed ID: 11537925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects on properties of a thiol protease from Xenopus embryos of changes in substrate and assay conditions.
    Miyata S; Nishibe Y; Kihara HK
    Cell Biol Int; 1995 Apr; 19(4):333-8. PubMed ID: 7613521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine triphosphate levels in steelhead (Oncorhynchus mykiss) eggs: an examination of turnover, localization and role.
    Wendling NC; Bencic DC; Nagler JJ; Cloud JG; Ingermann RL
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Apr; 137(4):739-48. PubMed ID: 15123182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of dorsoventral polarity in the Xenopus egg requires microtubules.
    Scharf SR; Lieberman MB; Cande WZ
    Prog Clin Biol Res; 1986; 217B():345-8. PubMed ID: 3749189
    [No Abstract]   [Full Text] [Related]  

  • 40. In vivo regulation of the early embryonic cell cycle in Xenopus.
    Hartley RS; Rempel RE; Maller JL
    Dev Biol; 1996 Feb; 173(2):408-19. PubMed ID: 8606001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.