BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37608179)

  • 1. Experimental investigation on a thermochemical seasonal sorption energy storage battery utilizing MgSO
    Salama MM; Mohamed SA; Attalla M; Shmroukh AN
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98502-98525. PubMed ID: 37608179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corn Cobs' Biochar as Green Host of Salt Hydrates for Enhancing the Water Sorption Kinetics in Thermochemical Heat Storage Systems.
    Nguyen MH; Zbair M; Dutournié P; Limousy L; Bennici S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of porous carbon materials on heat storage performance of CaCl
    Gao N; Deng L; Li J; Zeng T; Huang H; Kobayashi N; Kubota M; Yang X
    RSC Adv; 2023 Oct; 13(46):32567-32581. PubMed ID: 37936641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrated Salt/Graphite/Polyelectrolyte Organic-Inorganic Hybrids for Efficient Thermochemical Storage.
    Salviati S; Carosio F; Saracco G; Fina A
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30871047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Organic Frameworks for Ammonia-Based Thermal Energy Storage.
    An G; Xia X; Wu S; Liu Z; Wang L; Li S
    Small; 2021 Nov; 17(44):e2102689. PubMed ID: 34553830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hygroscopic additive-modified magnesium sulfate thermochemical material construction and heat transfer numerical simulation for low temperature energy storage.
    Li SJ; Yang XY; Deng LS; Fu YC; Pang MJ; Dong T; Yu YS; Su LN; Jiang S
    RSC Adv; 2022 Mar; 12(14):8792-8803. PubMed ID: 35424807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Fly Ash Samples from Different Types of Incinerators for Their Potential as Storage Materials for Thermochemical Energy and CO
    Setoodeh Jahromy S; Azam M; Huber F; Jordan C; Wesenauer F; Huber C; Naghdi S; Schwendtner K; Neuwirth E; Laminger T; Eder D; Werner A; Harasek M; Winter F
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Zero-Energy Smart Battery Thermal Management Enabled by Sorption Energy Harvesting from Air.
    Xu J; Chao J; Li T; Yan T; Wu S; Wu M; Zhao B; Wang R
    ACS Cent Sci; 2020 Sep; 6(9):1542-1554. PubMed ID: 32999929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of 3D carbon nanoadditives on lithium hydroxide monohydrate based composite materials for highly efficient low temperature thermochemical heat storage.
    Li S; Huang H; Li J; Kobayashi N; Osaka Y; He Z; Yuan H
    RSC Adv; 2018 Feb; 8(15):8199-8208. PubMed ID: 35542007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Deep Q-Network for User-Side Battery Energy Storage Charging and Discharging Strategy in Industrial Parks.
    Chen S; Jiang C; Li J; Xiang J; Xiao W
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of energy storage materials for developments in solar cookers.
    Khatri R; Goyal R; Sharma RK
    F1000Res; 2022; 11():1292. PubMed ID: 37224322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the Integration of a Silicon/Graphite Anode-Based Lithium-Ion Battery in Photovoltaic Charging Battery Systems.
    Hamzelui N; Kin LC; Köhler J; Astakhov O; Liu Z; Kirchartz T; Rau U; Eshetu GG; Merdzhanova T; Figgemeier E
    ACS Omega; 2022 Aug; 7(31):27532-27541. PubMed ID: 35967020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of expanded graphite's structural and elemental characteristics on its oil and heavy metal sorption properties.
    Coetzee D; Rojviroon T; Niamlang S; Militký J; Wiener J; Večerník J; Melicheríková J; Müllerová J
    Sci Rep; 2024 Jun; 14(1):13716. PubMed ID: 38877151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Composite Water Sorbents CaCl₂-PHTS for Low-Temperature Sorption Heat Storage: Determination of Structural Properties.
    Ristić A; Zabukovec Logar N
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30587775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ball-Milled Steatite Powder on the Latent Heat Energy Storage Properties and Heat Charging-Discharging Periods of Paraffin Wax as Phase Change Material.
    Kannaiyan S; Huang SJ; Rathnaraj D; Srinivasan SA
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption behavior of H
    Wang Z; Yan T; Pan WG
    Phys Chem Chem Phys; 2024 Mar; 26(12):9369-9377. PubMed ID: 38444362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.