These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3760857)

  • 21. [Non-enzymatic transphosphorylation reactions due to high polymer polyphosphates and their role in abiogenesis].
    Kulaev IS; Skriabin KG
    Zh Evol Biokhim Fiziol; 1974; 10(6):553-60. PubMed ID: 4450842
    [No Abstract]   [Full Text] [Related]  

  • 22. Thermodynamics of ATP hydrolysis from membrane electrode measurements of metal-ion ATP and ADP complexation.
    Fogt EJ; Rechnitz GA
    Arch Biochem Biophys; 1974 Dec; 165(2):604-14. PubMed ID: 4441094
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of divalent cations on the hydrolytically induced conformational changes in the myosin-ADP complex.
    Schaub MC; Watterson JG
    Hoppe Seylers Z Physiol Chem; 1973 Mar; 354(3):235-6. PubMed ID: 4803472
    [No Abstract]   [Full Text] [Related]  

  • 24. Interaction of nitrogenase with nucleotide analogs of ATP and ADP and the effect of metal ions on ADP inhibition.
    Weston MF; Kotake S; Davis LC
    Arch Biochem Biophys; 1983 Sep; 225(2):809-17. PubMed ID: 6354096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The different roles of metal ions and water molecules in the recognition and catalyzed hydrolysis of ATP by phenanthroline-containing polyamines.
    Guo Y; Ge Q; Lin H; Lin HK; Zhu S; Zhou C
    Biophys Chem; 2003 Aug; 105(1):119-31. PubMed ID: 12932584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 31P NMR and isothermal titration calorimetry studies on polyoxomolybdates-catalyzed hydrolysis of ATP.
    Ishikawa E; Yamase T
    J Inorg Biochem; 2006 Mar; 100(3):344-50. PubMed ID: 16403572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UNUSUAL RAPID CLEAVAGE OF TERMINAL PHOSPHATE GROUP OF N-6-DISUBSTITUTED ADENOSINE 5'-TRIPHOSPHATE BY DIVALENT CATION.
    IKEHARA M; UNO H
    Biochim Biophys Acta; 1964 Jun; 85():512-5. PubMed ID: 14194872
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparison of the metal-ion-promoted dephosphorylation of the 5'-triphosphates of adenosine, inosine, guanosine and cytidine by Mn2+, Ni2+ and Zn2+ in binary and ternary complexes.
    Amsler PE; Sigel H
    Eur J Biochem; 1976 Apr; 63(2):569-81. PubMed ID: 4327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Standard free energy maps for the hydrolysis of ATP as a function of pH, pMg and pCa.
    Shikama K
    Arch Biochem Biophys; 1971 Nov; 147(1):311-7. PubMed ID: 5114938
    [No Abstract]   [Full Text] [Related]  

  • 30. Role of divalent metal cations in ATP hydrolysis catalyzed by the hepatitis C virus NS3 helicase: magnesium provides a bridge for ATP to fuel unwinding.
    Frick DN; Banik S; Rypma RS
    J Mol Biol; 2007 Jan; 365(4):1017-32. PubMed ID: 17084859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N; Migala A; Hasselbach W
    Eur J Biochem; 1979 Nov; 101(2):593-606. PubMed ID: 160316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of activation of bicarbonate ion by mitochondrial carbamoyl-phosphate synthetase: formation of enzyme-bound adenosine diphosphate from the adenosine triphosphate that yields inorganic phosphate.
    Rubio V; Britton HG; Grisolia S; Sproat BS; Lowe G
    Biochemistry; 1981 Mar; 20(7):1969-74. PubMed ID: 6261808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the peribacteroid membrane ATPase of lupin root nodules.
    Domigan NM; Farnden KJ; Robertson JG; Monk BC
    Arch Biochem Biophys; 1988 Aug; 264(2):564-73. PubMed ID: 2969700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase.
    Willemoës M; Hove-Jensen B
    Biochemistry; 1997 Apr; 36(16):5078-83. PubMed ID: 9125530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of divalent metal ions with inorganic and nucleoside phosphates. II. Kinetics of magnesium(II) with HP 3 O 10 4- ,ATP, CTP, HP 2 O 7 3- , ADP, and CDP.
    Frey CM; Banyasz JL; Stuehr JE
    J Am Chem Soc; 1972 Dec; 94(26):9198-204. PubMed ID: 4345161
    [No Abstract]   [Full Text] [Related]  

  • 36. Inhibition of photophosphorylation by ATP and the role of magnesium in photophosphorylation.
    Komatsu M; Murakami S
    Biochim Biophys Acta; 1976 Jan; 423(1):103-10. PubMed ID: 1247601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate specificity for catalysis of phosphoryl transfer by the calcium ATPase of sarcoplasmic reticulum.
    Myung J; Jencks WP
    Arch Biochem Biophys; 1994 Aug; 313(1):39-46. PubMed ID: 8053684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two states of the nucleotide-binding site of sarcoplasmic reticulum adenosine triphosphatase detected by the calcium-dependent reaction with adenosine 5'-[gamma-imidazolidate]triphosphate and adenosine 5'-[beta-imidazolidate]diphosphate.
    Gutowski-Eckel Z; Bäumert HG
    Eur J Biochem; 1993 Dec; 218(3):823-8. PubMed ID: 8281933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional groups at the catalytic site of F1 adenosine triphosphatase.
    Ting LP; Wang JH
    Biochemistry; 1980 Dec; 19(25):5665-70. PubMed ID: 6450612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-catalytic roles of ATP in muscle metabolism and in its control.
    Berman MC
    J Mol Cell Cardiol; 1984 Mar; 16(3):191-4. PubMed ID: 6143830
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.