These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37608804)
1. BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations. Zhang B; Vakanski A; Xian M IEEE Access; 2023; 11():79480-79494. PubMed ID: 37608804 [TBL] [Abstract][Full Text] [Related]
2. BI-RADS-NET: AN EXPLAINABLE MULTITASK LEARNING APPROACH FOR CANCER DIAGNOSIS IN BREAST ULTRASOUND IMAGES. Zhang B; Vakanski A; Xian M IEEE Int Workshop Mach Learn Signal Process; 2021 Oct; 2021():. PubMed ID: 35509454 [TBL] [Abstract][Full Text] [Related]
3. POST-HOC EXPLAINABILITY OF BI-RADS DESCRIPTORS IN A MULTI-TASK FRAMEWORK FOR BREAST CANCER DETECTION AND SEGMENTATION. Karimzadeh M; Vakanski A; Xian M; Zhang B IEEE Int Workshop Mach Learn Signal Process; 2023 Sep; 2023():. PubMed ID: 38572141 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning for Describing Breast Ultrasound Images with BI-RADS Terms. Carrilero-Mardones M; Parras-Jurado M; Nogales A; Pérez-Martín J; Díez FJ J Imaging Inform Med; 2024 Jun; ():. PubMed ID: 38926264 [TBL] [Abstract][Full Text] [Related]
5. A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Rodríguez-Cristerna A; Gómez-Flores W; de Albuquerque Pereira WC Comput Methods Programs Biomed; 2018 Jan; 153():33-40. PubMed ID: 29157459 [TBL] [Abstract][Full Text] [Related]
6. Segmentation-based BI-RADS ensemble classification of breast tumours in ultrasound images. Bobowicz M; Badocha M; Gwozdziewicz K; Rygusik M; Kalinowska P; Szurowska E; Dziubich T Int J Med Inform; 2024 Sep; 189():105522. PubMed ID: 38852288 [TBL] [Abstract][Full Text] [Related]
7. Multi-Task/Single-Task Joint Learning of Ultrasound BI-RADS Features. Huang Q; Ye L IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):691-701. PubMed ID: 34871170 [TBL] [Abstract][Full Text] [Related]
8. BUS-BRA: A breast ultrasound dataset for assessing computer-aided diagnosis systems. Gómez-Flores W; Gregorio-Calas MJ; Coelho de Albuquerque Pereira W Med Phys; 2024 Apr; 51(4):3110-3123. PubMed ID: 37937827 [TBL] [Abstract][Full Text] [Related]
9. Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Shan J; Alam SK; Garra B; Zhang Y; Ahmed T Ultrasound Med Biol; 2016 Apr; 42(4):980-8. PubMed ID: 26806441 [TBL] [Abstract][Full Text] [Related]
10. Computer aided classification system for breast ultrasound based on Breast Imaging Reporting and Data System (BI-RADS). Shen WC; Chang RF; Moon WK Ultrasound Med Biol; 2007 Nov; 33(11):1688-98. PubMed ID: 17681678 [TBL] [Abstract][Full Text] [Related]
11. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Ciritsis A; Rossi C; Eberhard M; Marcon M; Becker AS; Boss A Eur Radiol; 2019 Oct; 29(10):5458-5468. PubMed ID: 30927100 [TBL] [Abstract][Full Text] [Related]
12. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms. Boumaraf S; Liu X; Ferkous C; Ma X Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017 [TBL] [Abstract][Full Text] [Related]
13. Using BI-RADS Stratifications as Auxiliary Information for Breast Masses Classification in Ultrasound Images. Xing J; Chen C; Lu Q; Cai X; Yu A; Xu Y; Xia X; Sun Y; Xiao J; Huang L IEEE J Biomed Health Inform; 2021 Jun; 25(6):2058-2070. PubMed ID: 33119515 [TBL] [Abstract][Full Text] [Related]
14. Interpretable diagnosis of breast lesions in ultrasound imaging using deep multi-stage reasoning. Cui K; Liu W; Wang D Phys Med Biol; 2024 Oct; 69(21):. PubMed ID: 39401527 [No Abstract] [Full Text] [Related]
15. Semantic Segmentation of the Malignant Breast Imaging Reporting and Data System Lexicon on Breast Ultrasound Images by Using DeepLab v3. Shia WC; Hsu FR; Dai ST; Guo SL; Chen DR Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891030 [TBL] [Abstract][Full Text] [Related]
16. Reproducibility of quantitative high-throughput BI-RADS features extracted from ultrasound images of breast cancer. Hu Y; Qiao M; Guo Y; Wang Y; Yu J; Li J; Chang C Med Phys; 2017 Jul; 44(7):3676-3685. PubMed ID: 28409843 [TBL] [Abstract][Full Text] [Related]
17. The uncertainty of boundary can improve the classification accuracy of BI-RADS 4A ultrasound image. Wang H; Hu Y; Lu Y; Zhou J; Guo Y Med Phys; 2022 May; 49(5):3314-3324. PubMed ID: 35261034 [TBL] [Abstract][Full Text] [Related]
18. A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses. Interlenghi M; Salvatore C; Magni V; Caldara G; Schiavon E; Cozzi A; Schiaffino S; Carbonaro LA; Castiglioni I; Sardanelli F Diagnostics (Basel); 2022 Jan; 12(1):. PubMed ID: 35054354 [TBL] [Abstract][Full Text] [Related]
19. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images. Kaplan E; Chan WY; Dogan S; Barua PD; Bulut HT; Tuncer T; Cizik M; Tan RS; Acharya UR Med Eng Phys; 2022 Oct; 108():103895. PubMed ID: 36195364 [TBL] [Abstract][Full Text] [Related]
20. Knowledge Tensor-Aided Breast Ultrasound Image Assistant Inference Framework. Li G; Xiao L; Wang G; Liu Y; Liu L; Huang Q Healthcare (Basel); 2023 Jul; 11(14):. PubMed ID: 37510455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]