These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37608934)

  • 21. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
    Liu J; Das D; Yang F; Schwartz AG; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2018 Oct; 80():217-227. PubMed ID: 30240954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate.
    Karunaratne A; Li S; Bull AMJ
    Sci Rep; 2018 Feb; 8(1):3707. PubMed ID: 29487334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen.
    Depalle B; Duarte AG; Fiedler IAK; Pujo-Menjouet L; Buehler MJ; Berteau JP
    Bone; 2018 May; 110():107-114. PubMed ID: 29414596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deformation behavior and mechanical properties of amyloid protein nanowires.
    Solar M; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Mar; 19():43-9. PubMed ID: 23290516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissipation and recovery in collagen fibrils under cyclic loading: A molecular dynamics study.
    Suhail A; Banerjee A; Rajesh R
    Phys Rev E; 2024 Feb; 109(2-1):024411. PubMed ID: 38491641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.
    Susilo ME; Roeder BA; Voytik-Harbin SL; Kokini K; Nauman EA
    Acta Biomater; 2010 Apr; 6(4):1471-86. PubMed ID: 19913642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Bone Miner Res; 2016 Feb; 31(2):380-90. PubMed ID: 26866939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Habitual side-specific loading leads to structural, mechanical, and compositional changes in the patellar tendon of young and senior lifelong male athletes.
    Couppé C; Svensson RB; Skovlund SV; Jensen JK; Eriksen CS; Malmgaard-Clausen NM; Nybing JD; Kjaer M; Magnusson SP
    J Appl Physiol (1985); 2021 Oct; 131(4):1187-1199. PubMed ID: 34382838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Advanced Glycation Endproducts in Rat Tail Collagen and Correlation to Tendon Stiffening.
    Jost T; Zipprich A; Glomb MA
    J Agric Food Chem; 2018 Apr; 66(15):3957-3965. PubMed ID: 29620898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2014 Feb; 136(2):021024. PubMed ID: 24317298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagen Structure-Function Relationships from Solid-State NMR Spectroscopy.
    Goldberga I; Li R; Duer MJ
    Acc Chem Res; 2018 Jul; 51(7):1621-1629. PubMed ID: 29931970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-equilibrium growth and twist of cross-linked collagen fibrils.
    Leighton MP; Kreplak L; Rutenberg AD
    Soft Matter; 2021 Feb; 17(5):1415-1427. PubMed ID: 33325971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in Advanced Glycation End-products.
    Gautieri A; Redaelli A; Buehler MJ; Vesentini S
    Matrix Biol; 2014 Feb; 34():89-95. PubMed ID: 24060753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone.
    Willett TL; Sutty S; Gaspar A; Avery N; Grynpas M
    Bone; 2013 Feb; 52(2):611-22. PubMed ID: 23178516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.
    Yang L; van der Werf KO; Dijkstra PJ; Feijen J; Bennink ML
    J Mech Behav Biomed Mater; 2012 Feb; 6():148-58. PubMed ID: 22301184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.