These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 37609202)
1. EagleC Explorer: A desktop application for interactively detecting and visualizing SVs and enhancer hijacking on Hi-C contact maps. Fu Y; Wang X; Yue F bioRxiv; 2023 Aug; ():. PubMed ID: 37609202 [TBL] [Abstract][Full Text] [Related]
2. EagleC: A deep-learning framework for detecting a full range of structural variations from bulk and single-cell contact maps. Wang X; Luan Y; Yue F Sci Adv; 2022 Jun; 8(24):eabn9215. PubMed ID: 35704579 [TBL] [Abstract][Full Text] [Related]
3. Integrated paired-end enhancer profiling and whole-genome sequencing reveals recurrent Ooi WF; Nargund AM; Lim KJ; Zhang S; Xing M; Mandoli A; Lim JQ; Ho SWT; Guo Y; Yao X; Lin SJ; Nandi T; Xu C; Ong X; Lee M; Tan AL; Lam YN; Teo JX; Kaneda A; White KP; Lim WK; Rozen SG; Teh BT; Li S; Skanderup AJ; Tan P Gut; 2020 Jun; 69(6):1039-1052. PubMed ID: 31542774 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Wang X; Xu J; Zhang B; Hou Y; Song F; Lyu H; Yue F Nat Methods; 2021 Jun; 18(6):661-668. PubMed ID: 34092790 [TBL] [Abstract][Full Text] [Related]
5. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Durand NC; Robinson JT; Shamim MS; Machol I; Mesirov JP; Lander ES; Aiden EL Cell Syst; 2016 Jul; 3(1):99-101. PubMed ID: 27467250 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Hi-C Data for Discovery of Structural Variations in Cancer. Song F; Xu J; Dixon J; Yue F Methods Mol Biol; 2022; 2301():143-161. PubMed ID: 34415534 [TBL] [Abstract][Full Text] [Related]
7. HiSV: A control-free method for structural variation detection from Hi-C data. Li J; Gao L; Ye Y PLoS Comput Biol; 2023 Jan; 19(1):e1010760. PubMed ID: 36608109 [TBL] [Abstract][Full Text] [Related]
8. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC. Lee Y; Park SH; Lee H Mol Syst Biol; 2024 Sep; ():. PubMed ID: 39322849 [TBL] [Abstract][Full Text] [Related]
10. Spatial and clonality-resolved 3D cancer genome alterations reveal enhancer-hijacking as a potential prognostic marker for colorectal cancer. Kim K; Kim M; Lee AJ; Song SH; Kang JK; Eom J; Kang GH; Bae JM; Min S; Kim Y; Lim Y; Kim HS; Kim YJ; Kim TY; Jung I Cell Rep; 2023 Jul; 42(7):112778. PubMed ID: 37453058 [TBL] [Abstract][Full Text] [Related]
11. Genome contact map explorer: a platform for the comparison, interactive visualization and analysis of genome contact maps. Kumar R; Sobhy H; Stenberg P; Lizana L Nucleic Acids Res; 2017 Sep; 45(17):e152. PubMed ID: 28973466 [TBL] [Abstract][Full Text] [Related]
12. Hi-C as a molecular rangefinder to examine genomic rearrangements. Kim K; Kim M; Kim Y; Lee D; Jung I Semin Cell Dev Biol; 2022 Jan; 121():161-170. PubMed ID: 33992531 [TBL] [Abstract][Full Text] [Related]
13. VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data. Highsmith M; Cheng J Sci Rep; 2021 Apr; 11(1):8880. PubMed ID: 33893353 [TBL] [Abstract][Full Text] [Related]
14. GrapHiC: An integrative graph based approach for imputing missing Hi-C reads. Murtaza G; Wagner J; Zook JM; Singh R IEEE/ACM Trans Comput Biol Bioinform; 2024 Oct; PP():. PubMed ID: 39392732 [TBL] [Abstract][Full Text] [Related]
15. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data. Oluwadare O; Cheng J BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603 [TBL] [Abstract][Full Text] [Related]
16. HiCHap: a package to correct and analyze the diploid Hi-C data. Luo H; Li X; Fu H; Peng C BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075 [TBL] [Abstract][Full Text] [Related]
17. IVAG: An Integrative Visualization Application for Various Types of Genomic Data Based on R-Shiny and the Docker Platform. Lee TR; Ahn JM; Kim G; Kim S Genomics Inform; 2017 Dec; 15(4):178-182. PubMed ID: 29307145 [TBL] [Abstract][Full Text] [Related]
18. Hi-C detects novel structural variants in HL-60 and HL-60/S4 cell lines. Jacobson EC; Grand RS; Perry JK; Vickers MH; Olins AL; Olins DE; O'Sullivan JM Genomics; 2020 Jan; 112(1):151-162. PubMed ID: 31095996 [TBL] [Abstract][Full Text] [Related]
19. DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks. Liu T; Wang Z PLoS Comput Biol; 2023 Jul; 19(7):e1011307. PubMed ID: 37440599 [TBL] [Abstract][Full Text] [Related]
20. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]