These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37609204)

  • 1. Zinc-Induced Fluorescence Turn-on in Native and Mutant Phycoerythrobilin-Binding Orange Fluorescent Proteins.
    Jensen GC; Janis MK; Jara J; Abbasi N; Zastrow ML
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-Induced Fluorescence Turn-On in Native and Mutant Phycoerythrobilin-Binding Orange Fluorescent Proteins.
    Jensen GC; Janis MK; Jara J; Abbasi N; Zastrow ML
    Biochemistry; 2023 Oct; 62(19):2828-2840. PubMed ID: 37699411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome.
    Janis MK; Zou W; Zastrow ML
    Chembiochem; 2023 Oct; 24(19):e202300358. PubMed ID: 37423892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Single Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome.
    Janis MK; Zou W; Zastrow ML
    bioRxiv; 2023 May; ():. PubMed ID: 37214816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from
    Jiang SD; Sheng Y; Wu XJ; Zhu YL; Li PP
    J Microbiol Biotechnol; 2021 Feb; 31(2):233-239. PubMed ID: 33203817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin.
    Sun YF; Xu JG; Tang K; Miao D; Gärtner W; Scheer H; Zhao KH; Zhou M
    Photochem Photobiol Sci; 2014 May; 13(5):757-63. PubMed ID: 24604419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion.
    Hoshino H; Narikawa R
    Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily.
    Rockwell NC; Martin SS; Gulevich AG; Lagarias JC
    Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.
    Rockwell NC; Martin SS; Feoktistova K; Lagarias JC
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue.
    Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R
    Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120.
    Ma Q; Hua HH; Chen Y; Liu BB; Krämer AL; Scheer H; Zhao KH; Zhou M
    FEBS J; 2012 Nov; 279(21):4095-108. PubMed ID: 22958513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold.
    Fushimi K; Hasegawa M; Ito T; Rockwell NC; Enomoto G; -Win NN; Lagarias JC; Ikeuchi M; Narikawa R
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15573-15580. PubMed ID: 32571944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles.
    Rockwell NC; Martin SS; Lagarias JC
    Photochem Photobiol Sci; 2015 May; 14(5):929-41. PubMed ID: 25738434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of D
    Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R
    J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization and inter-chromophore distance of Cph1 phytochrome from Synechocystis, as monitored by fluorescence homo and hetero energy transfer.
    Otto H; Lamparter T; Borucki B; Hughes J; Heyn MP
    Biochemistry; 2003 May; 42(19):5885-95. PubMed ID: 12741847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli.
    Yoshihara S; Shimada T; Matsuoka D; Zikihara K; Kohchi T; Tokutomi S
    Biochemistry; 2006 Mar; 45(11):3775-84. PubMed ID: 16533061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome.
    Sato T; Kikukawa T; Miyoshi R; Kajimoto K; Yonekawa C; Fujisawa T; Unno M; Eki T; Hirose Y
    J Biol Chem; 2019 Dec; 294(49):18909-18922. PubMed ID: 31649035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant Flavin-Based Fluorescent Protein Sensors for Detecting Intracellular Zinc and Copper in
    Zou W; Nguyen HN; Zastrow ML
    ACS Sens; 2022 Nov; 7(11):3369-3378. PubMed ID: 36282086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs.
    Anders K; Gutt A; Gärtner W; Essen LO
    J Biol Chem; 2014 Sep; 289(37):25590-600. PubMed ID: 25012656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys.
    Fushimi K; Narikawa R
    Biochem J; 2021 Mar; 478(5):1043-1059. PubMed ID: 33559683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.