These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37609665)

  • 1. Multi-dimensional task recognition for human-robot teaming: literature review.
    Baskaran P; Adams JA
    Front Robot AI; 2023; 10():1123374. PubMed ID: 37609665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-triggered robot self-assessment to aid in autonomy adjustment.
    Conlon N; Ahmed N; Szafir D
    Front Robot AI; 2023; 10():1294533. PubMed ID: 38239275
    [No Abstract]   [Full Text] [Related]  

  • 3. Generalized Behavior Framework for Mobile Robots Teaming With Humans in Harsh Environments.
    Avram O; Baraldo S; Valente A
    Front Robot AI; 2022; 9():898366. PubMed ID: 35845254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks.
    Jaramillo IE; Jeong JG; Lopez PR; Lee CH; Kang DY; Ha TJ; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot Authority in Human-Robot Teaming: Effects of Human-Likeness and Physical Embodiment on Compliance.
    Haring KS; Satterfield KM; Tossell CC; de Visser EJ; Lyons JR; Mancuso VF; Finomore VS; Funke GJ
    Front Psychol; 2021; 12():625713. PubMed ID: 34135804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Assistance in Dynamic Smart Environments-A Hierarchical Continual Planning in the Now Framework.
    Harman H; Chintamani K; Simoens P
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empathy in Human-Robot Interaction: Designing for Social Robots.
    Park S; Whang M
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Relationship between Robot's Nonverbal Behaviour and Human's Likability Based on Human's Personality.
    Thepsoonthorn C; Ogawa KI; Miyake Y
    Sci Rep; 2018 May; 8(1):8435. PubMed ID: 29849079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Human-Robot Teaming Performance through Q-Learning-Based Task Load Adjustment and Physiological Data Analysis.
    Korivand S; Galvani G; Ajoudani A; Gong J; Jalili N
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Sensing Tactile Arrays, Shear Force, and Proprioception of Robot on Texture Recognition.
    Yang JH; Kim SY; Lim SC
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human-Robot Interaction.
    Yamada T; Murata S; Arie H; Ogata T
    Front Neurorobot; 2016; 10():5. PubMed ID: 27471463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting task performance for intelligent human-machine interactions.
    Heard J; Baskaran P; Adams JA
    Front Neurorobot; 2022; 16():973967. PubMed ID: 36176571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication and knowledge sharing in human-robot interaction and learning from demonstration.
    Koenig N; Takayama L; Matarić M
    Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.