These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37610353)

  • 21. Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy.
    Tian Z; Yu Y; Fang H; Xie W; Guo M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signaling repurposable drug combinations against COVID-19 by developing the heterogeneous deep herb-graph method.
    Yang F; Zhang S; Pan W; Yao R; Zhang W; Zhang Y; Wang G; Zhang Q; Cheng Y; Dong J; Ruan C; Cui L; Wu H; Xue F
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug-target interaction prediction: A Bayesian ranking approach.
    Peska L; Buza K; Koller J
    Comput Methods Programs Biomed; 2017 Dec; 152():15-21. PubMed ID: 29054256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
    Hao M; Bryant SH; Wang Y
    Brief Bioinform; 2019 Jul; 20(4):1465-1474. PubMed ID: 29420684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug repositioning by integrating target information through a heterogeneous network model.
    Wang W; Yang S; Zhang X; Li J
    Bioinformatics; 2014 Oct; 30(20):2923-30. PubMed ID: 24974205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GraphDTA: predicting drug-target binding affinity with graph neural networks.
    Nguyen T; Le H; Quinn TP; Nguyen T; Le TD; Venkatesh S
    Bioinformatics; 2021 May; 37(8):1140-1147. PubMed ID: 33119053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DR2DI: a powerful computational tool for predicting novel drug-disease associations.
    Lu L; Yu H
    J Comput Aided Mol Des; 2018 May; 32(5):633-642. PubMed ID: 29687309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A weighted bilinear neural collaborative filtering approach for drug repositioning.
    Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions.
    Sun C; Xuan P; Zhang T; Ye Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):455-464. PubMed ID: 32750854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion.
    Zhang W; Xu H; Li X; Gao Q; Wang L
    Bioinformatics; 2020 May; 36(9):2839-2847. PubMed ID: 31999326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.
    Xiong Z; Huang F; Wang Z; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization.
    Mongia A; Majumdar A
    PLoS One; 2020; 15(1):e0226484. PubMed ID: 31945078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction.
    He H; Chen G; Chen CY
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37252835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting human microbe-drug associations via graph convolutional network with conditional random field.
    Long Y; Wu M; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(19):4918-4927. PubMed ID: 32597948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2.
    Su X; Hu L; You Z; Hu P; Wang L; Zhao B
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.