BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37610537)

  • 1. Feasibility of the set-up for the different approaches in robotic head and neck surgery with the Versius Surgical System.
    Granell J; Ramirez-Rosa A; Fernandez-Rastrilla I; Granados-Sitges J; Caballero P; Granell L; Sanchez-Camon I; Mendez-Benegassi I; Gutierrez-Fonseca R
    J Robot Surg; 2023 Dec; 17(6):3035-3038. PubMed ID: 37610537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-assisted Sistrunk's operation, total thyroidectomy, and neck dissection via a transaxillary and retroauricular (TARA) approach in papillary carcinoma arising in thyroglossal duct cyst and thyroid gland.
    Byeon HK; Ban MJ; Lee JM; Ha JG; Kim ES; Koh YW; Choi EC
    Ann Surg Oncol; 2012 Dec; 19(13):4259-61. PubMed ID: 23070784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic total thyroidectomy with modified radical neck dissection via unilateral retroauricular approach.
    Byeon HK; Holsinger FC; Tufano RP; Chung HJ; Kim WS; Koh YW; Choi EC
    Ann Surg Oncol; 2014 Nov; 21(12):3872-5. PubMed ID: 25227305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical Evaluation of the Versius Surgical System, a New Robot-assisted Surgical Device for Use in Minimal Access Renal and Prostate Surgery.
    Thomas BC; Slack M; Hussain M; Barber N; Pradhan A; Dinneen E; Stewart GD
    Eur Urol Focus; 2021 Mar; 7(2):444-452. PubMed ID: 32169362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transoral Thyroidectomy Using A Flexible Robotic System: A Preclinical Cadaver Feasibility Study.
    Cottrill EE; Funk EK; Goldenberg D; Goyal N
    Laryngoscope; 2019 Jun; 129(6):1482-1487. PubMed ID: 30284264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Evolving Robotic Technology for Head and Neck Surgery.
    Sharma A; Albergotti WG; Duvvuri U
    Ann Otol Rhinol Laryngol; 2016 Mar; 125(3):207-12. PubMed ID: 26391091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: Next-generation robotic head and neck surgery.
    Holsinger FC
    Laryngoscope; 2016 Apr; 126(4):864-9. PubMed ID: 26509920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of Image Inversion for Ventral Hernia Repair Using the Versius System.
    Lima DL; Pinto RD; Trauczynski P; Liu J; Cavazzola LT
    J Laparoendosc Adv Surg Tech A; 2024 Feb; 34(2):144-146. PubMed ID: 38054942
    [No Abstract]   [Full Text] [Related]  

  • 9. Next-Generation Robotic Head and Neck Surgery.
    Orosco RK; Arora A; Jeannon JP; Holsinger FC
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):213-219. PubMed ID: 30404095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform.
    Russell JO; Noureldine SI; Al Khadem MG; Chaudhary HA; Day AT; Kim HY; Tufano RP; Richmon JD
    J Robot Surg; 2017 Sep; 11(3):341-346. PubMed ID: 28155047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The new era of robotic neck surgery: The universal application of the retroauricular approach.
    Byeon HK; Koh YW
    J Surg Oncol; 2015 Dec; 112(7):707-16. PubMed ID: 26410781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex System.
    Funk E; Goldenberg D; Goyal N
    Head Neck; 2017 Jun; 39(6):1218-1225. PubMed ID: 28301093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transoral robotic thyroidectomy on two human cadavers using the Intuitive da Vinci single port robotic surgical system and CO
    Park D; Shaear M; Chen YH; Russell JO; Kim HY; Tufano RP
    Head Neck; 2019 Dec; 41(12):4229-4233. PubMed ID: 31469475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic Head and Neck Surgery: Beyond TORS.
    Lira RB; Kowalski LP
    Curr Oncol Rep; 2020 Jul; 22(9):88. PubMed ID: 32643128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outcomes of Minimally Invasive Thyroid Surgery - A Systematic Review and Meta-Analysis.
    de Vries LH; Aykan D; Lodewijk L; Damen JAA; Borel Rinkes IHM; Vriens MR
    Front Endocrinol (Lausanne); 2021; 12():719397. PubMed ID: 34456874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retroauricular thyroidectomy with a single-arm robotic surgical system: Preclinical cadaveric study.
    Noel JE; Lee MC; Tam K; Lim GC; Holsinger FC; Koh YW
    Head Neck; 2020 Dec; 42(12):3663-3669. PubMed ID: 32852084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic thyroidectomy by a gasless unilateral axillo-breast or axillary approach: our early experiences.
    Tae K; Ji YB; Jeong JH; Lee SH; Jeong MA; Park CW
    Surg Endosc; 2011 Jan; 25(1):221-8. PubMed ID: 20567849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic Thyroidectomy: Past, Future, and Current Perspectives.
    Kandil E; Attia AS; Hadedeya D; Shihabi A; Elnahla A
    Otolaryngol Clin North Am; 2020 Dec; 53(6):1031-1039. PubMed ID: 33127039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surgical completeness and safety of minimally invasive thyroidectomy in patients with thyroid cancer: A network meta-analysis.
    Kang YJ; Stybayeva G; Hwang SH
    Surgery; 2023 Jun; 173(6):1381-1390. PubMed ID: 36973129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic transoral periosteal thyroidectomy (TOPOT): experience in two cadavers.
    Lee HY; Richmon JD; Walvekar RR; Holsinger C; Kim HY
    J Laparoendosc Adv Surg Tech A; 2015 Feb; 25(2):139-42. PubMed ID: 25629368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.