These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 37610799)
1. Barriers and Enablers for Implementation of an Artificial Intelligence-Based Decision Support Tool to Reduce the Risk of Readmission of Patients With Heart Failure: Stakeholder Interviews. Nair M; Andersson J; Nygren JM; Lundgren LE JMIR Form Res; 2023 Aug; 7():e47335. PubMed ID: 37610799 [TBL] [Abstract][Full Text] [Related]
2. Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. Hogg HDJ; Al-Zubaidy M; ; Talks J; Denniston AK; Kelly CJ; Malawana J; Papoutsi C; Teare MD; Keane PA; Beyer FR; Maniatopoulos G J Med Internet Res; 2023 Jan; 25():e39742. PubMed ID: 36626192 [TBL] [Abstract][Full Text] [Related]
3. Implementing AI in Hospitals to Achieve a Learning Health System: Systematic Review of Current Enablers and Barriers. Kamel Rahimi A; Pienaar O; Ghadimi M; Canfell OJ; Pole JD; Shrapnel S; van der Vegt AH; Sullivan C J Med Internet Res; 2024 Aug; 26():e49655. PubMed ID: 39094106 [TBL] [Abstract][Full Text] [Related]
4. Integrating Explainable Machine Learning in Clinical Decision Support Systems: Study Involving a Modified Design Thinking Approach. Shulha M; Hovdebo J; D'Souza V; Thibault F; Harmouche R JMIR Form Res; 2024 Apr; 8():e50475. PubMed ID: 38625728 [TBL] [Abstract][Full Text] [Related]
5. Understanding the integration of artificial intelligence in healthcare organisations and systems through the NASSS framework: a qualitative study in a leading Canadian academic centre. Alami H; Lehoux P; Papoutsi C; Shaw SE; Fleet R; Fortin JP BMC Health Serv Res; 2024 Jun; 24(1):701. PubMed ID: 38831298 [TBL] [Abstract][Full Text] [Related]
6. Applying the Non-Adoption, Abandonment, Scale-up, Spread, and Sustainability Framework Across Implementation Stages to Identify Key Strategies to Facilitate Clinical Decision Support System Integration Within a Large Metropolitan Health Service: Interview and Focus Group Study. Fernando M; Abell B; McPhail SM; Tyack Z; Tariq A; Naicker S JMIR Med Inform; 2024 Oct; 12():e60402. PubMed ID: 39419497 [TBL] [Abstract][Full Text] [Related]
7. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
8. New and emerging technology for adult social care - the example of home sensors with artificial intelligence (AI) technology. Glasby J; Litchfield I; Parkinson S; Hocking L; Tanner D; Roe B; Bousfield J Health Soc Care Deliv Res; 2023 Jun; 11(9):1-64. PubMed ID: 37470136 [TBL] [Abstract][Full Text] [Related]
9. Generative AI in healthcare: an implementation science informed translational path on application, integration and governance. Reddy S Implement Sci; 2024 Mar; 19(1):27. PubMed ID: 38491544 [TBL] [Abstract][Full Text] [Related]
10. Acceptance, Barriers, and Facilitators to Implementing Artificial Intelligence-Based Decision Support Systems in Emergency Departments: Quantitative and Qualitative Evaluation. Fujimori R; Liu K; Soeno S; Naraba H; Ogura K; Hara K; Sonoo T; Ogura T; Nakamura K; Goto T JMIR Form Res; 2022 Jun; 6(6):e36501. PubMed ID: 35699995 [TBL] [Abstract][Full Text] [Related]
11. Stakeholder Perspectives on Clinical Decision Support Tools to Inform Clinical Artificial Intelligence Implementation: Protocol for a Framework Synthesis for Qualitative Evidence. Al-Zubaidy M; Hogg HDJ; Maniatopoulos G; Talks J; Teare MD; Keane PA; R Beyer F JMIR Res Protoc; 2022 Apr; 11(4):e33145. PubMed ID: 35363141 [TBL] [Abstract][Full Text] [Related]
12. Exploring Stakeholder Requirements to Enable the Research and Development of Artificial Intelligence Algorithms in a Hospital-Based Generic Infrastructure: Protocol for a Multistep Mixed Methods Study. Weinert L; Klass M; Schneider G; Heinze O JMIR Res Protoc; 2022 Dec; 11(12):e42208. PubMed ID: 36525300 [TBL] [Abstract][Full Text] [Related]
13. Identifying barriers and facilitators to successful implementation of computerized clinical decision support systems in hospitals: a NASSS framework-informed scoping review. Abell B; Naicker S; Rodwell D; Donovan T; Tariq A; Baysari M; Blythe R; Parsons R; McPhail SM Implement Sci; 2023 Jul; 18(1):32. PubMed ID: 37495997 [TBL] [Abstract][Full Text] [Related]
14. Health Care Professionals' Experiences and Views of eHealth in Pediatric Care: Qualitative Interview Study Applying a Theoretical Framework for Implementation. Castor C; Lindkvist RM; Hallström IK; Holmberg R JMIR Pediatr Parent; 2023 Oct; 6():e47663. PubMed ID: 37851500 [TBL] [Abstract][Full Text] [Related]
15. Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies. Greenhalgh T; Wherton J; Papoutsi C; Lynch J; Hughes G; A'Court C; Hinder S; Fahy N; Procter R; Shaw S J Med Internet Res; 2017 Nov; 19(11):e367. PubMed ID: 29092808 [TBL] [Abstract][Full Text] [Related]
16. Intensive Care Unit Physicians' Perspectives on Artificial Intelligence-Based Clinical Decision Support Tools: Preimplementation Survey Study. van der Meijden SL; de Hond AAH; Thoral PJ; Steyerberg EW; Kant IMJ; Cinà G; Arbous MS JMIR Hum Factors; 2023 Jan; 10():e39114. PubMed ID: 36602843 [TBL] [Abstract][Full Text] [Related]
17. Healthcare leaders' experiences of implementing artificial intelligence for medical history-taking and triage in Swedish primary care: an interview study. Siira E; Tyskbo D; Nygren J BMC Prim Care; 2024 Jul; 25(1):268. PubMed ID: 39048973 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Model for Readmission Prediction of Patients With Heart Failure Based on Electronic Health Records: Protocol for a Quasi-Experimental Study for Impact Assessment. Nair M; Lundgren LE; Soliman A; Dryselius P; Fogelberg E; Petersson M; Hamed O; Triantafyllou M; Nygren J JMIR Res Protoc; 2024 Mar; 13():e52744. PubMed ID: 38466983 [TBL] [Abstract][Full Text] [Related]
19. The NASSS-CAT Tools for Understanding, Guiding, Monitoring, and Researching Technology Implementation Projects in Health and Social Care: Protocol for an Evaluation Study in Real-World Settings. Greenhalgh T; Maylor H; Shaw S; Wherton J; Papoutsi C; Betton V; Nelissen N; Gremyr A; Rushforth A; Koshkouei M; Taylor J JMIR Res Protoc; 2020 May; 9(5):e16861. PubMed ID: 32401224 [TBL] [Abstract][Full Text] [Related]
20. Using the Theoretical Domains Framework to Identify Barriers and Enablers to Implementing a Virtual Tertiary-Regional Telemedicine Rounding and Consultation for Kids (TRaC-K) Model: Qualitative Study. Bele S; Cassidy C; Curran J; Johnson DW; Bailey JAM J Med Internet Res; 2021 Dec; 23(12):e28610. PubMed ID: 34941561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]