These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37610901)

  • 1. A Calibration-Free Hybrid Approach Combining SSVEP and EOG for Continuous Control.
    Mai X; Sheng X; Shu X; Ding Y; Zhu X; Meng J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3480-3491. PubMed ID: 37610901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 3. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An online hybrid BCI combining SSVEP and EOG-based eye movements.
    Zhang J; Gao S; Zhou K; Cheng Y; Mao S
    Front Hum Neurosci; 2023; 17():1103935. PubMed ID: 36875236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy.
    Chen Y; Yang C; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32380480
    [No Abstract]   [Full Text] [Related]  

  • 8. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing detection of steady-state visual evoked potentials using individual training data.
    Wang Y; Nakanishi M; Wang YT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3037-40. PubMed ID: 25570631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a High-speed Mental Spelling System Combining Eye Tracking and SSVEP-based BCI with High Scalability.
    Lin X; Chen Z; Xu K; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6318-6322. PubMed ID: 31947287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Detection of SSVEPs with Intermodulation Frequencies Using Individual Calibration Data.
    Chen X; Wang Y; Zhang S; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2531-2534. PubMed ID: 30440923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An MVMD-CCA Recognition Algorithm in SSVEP-Based BCI and Its Application in Robot Control.
    Wang K; Zhai DH; Xiong Y; Hu L; Xia Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2159-2167. PubMed ID: 34951857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.