These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer's related amyloid-beta pathology. Su S; Esparza TJ; Brody DL PLoS One; 2022; 17(10):e0276107. PubMed ID: 36256604 [TBL] [Abstract][Full Text] [Related]
6. Novel Human/Non-Human Primate Cross-Reactive Anti-Transferrin Receptor Nanobodies for Brain Delivery of Biologics. Rué L; Jaspers T; Degors IMS; Noppen S; Schols D; De Strooper B; Dewilde M Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376196 [TBL] [Abstract][Full Text] [Related]
7. Advanced translational PBPK model for transferrin receptor-mediated drug delivery to the brain. Sato S; Liu S; Goto A; Yoneyama T; Okita K; Yamamoto S; Hirabayashi H; Iwasaki S; Kusuhara H J Control Release; 2023 May; 357():379-393. PubMed ID: 37031741 [TBL] [Abstract][Full Text] [Related]
8. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Yu YJ; Zhang Y; Kenrick M; Hoyte K; Luk W; Lu Y; Atwal J; Elliott JM; Prabhu S; Watts RJ; Dennis MS Sci Transl Med; 2011 May; 3(84):84ra44. PubMed ID: 21613623 [TBL] [Abstract][Full Text] [Related]
9. Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2- cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats. Xia CQ; Shen WC Pharm Res; 2001 Feb; 18(2):191-5. PubMed ID: 11405290 [TBL] [Abstract][Full Text] [Related]
10. Binding, transcytosis and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-targeted delivery. Dan M; Cochran DB; Yokel RA; Dziubla TD PLoS One; 2013; 8(11):e81051. PubMed ID: 24278373 [TBL] [Abstract][Full Text] [Related]
11. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. Chang HY; Wu S; Chowdhury EA; Shah DK J Pharmacokinet Pharmacodyn; 2022 Jun; 49(3):337-362. PubMed ID: 35092540 [TBL] [Abstract][Full Text] [Related]
13. Single domain antibody-based vectors in the delivery of biologics across the blood-brain barrier: a review. Gao Y; Zhu J; Lu H Drug Deliv Transl Res; 2021 Oct; 11(5):1818-1828. PubMed ID: 33155179 [TBL] [Abstract][Full Text] [Related]
14. Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model. Schmid D; Buntz A; Hanh Phan TN; Mayer K; Hoffmann E; Thorey I; Niewöhner J; Vasters K; Sircar R; Mundigl O; Kontermann RE; Brinkmann U Biol Chem; 2018 Jun; 399(7):711-721. PubMed ID: 29466231 [TBL] [Abstract][Full Text] [Related]
15. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. Haqqani AS; Thom G; Burrell M; Delaney CE; Brunette E; Baumann E; Sodja C; Jezierski A; Webster C; Stanimirovic DB J Neurochem; 2018 Sep; 146(6):735-752. PubMed ID: 29877588 [TBL] [Abstract][Full Text] [Related]
16. VHHs as tools for therapeutic protein delivery to the central nervous system. Wouters Y; Jaspers T; Rué L; Serneels L; De Strooper B; Dewilde M Fluids Barriers CNS; 2022 Oct; 19(1):79. PubMed ID: 36192747 [TBL] [Abstract][Full Text] [Related]
17. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Clark AJ; Davis ME Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12486-91. PubMed ID: 26392563 [TBL] [Abstract][Full Text] [Related]
18. Subcellular trafficking and transcytosis efficacy of different receptor types for therapeutic antibody delivery at the blood‒brain barrier. Holst MR; de Wit NM; Ozgür B; Brachner A; Hyldig K; Appelt-Menzel A; Sleven H; Cader Z; de Vries HE; Neuhaus W; Jensen A; Brodin B; Nielsen MS Fluids Barriers CNS; 2023 Nov; 20(1):82. PubMed ID: 37932749 [TBL] [Abstract][Full Text] [Related]
19. Human Immortalized Cell-Based Blood-Brain Barrier Spheroid Models Offer an Evaluation Tool for the Brain Penetration Properties of Macromolecules. Kitamura K; Okamoto A; Morio H; Isogai R; Ito R; Yamaura Y; Izumi S; Komori T; Ito S; Ohtsuki S; Akita H; Furihata T Mol Pharm; 2022 Aug; 19(8):2754-2764. PubMed ID: 35766901 [TBL] [Abstract][Full Text] [Related]
20. Antibody screening using a human iPSC-based blood-brain barrier model identifies antibodies that accumulate in the CNS. Georgieva JV; Goulatis LI; Stutz CC; Canfield SG; Song HW; Gastfriend BD; Shusta EV FASEB J; 2020 Sep; 34(9):12549-12564. PubMed ID: 32960493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]