These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178 [TBL] [Abstract][Full Text] [Related]
4. Enriching Silver Nanocrystals with a Second Noble Metal. Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472 [TBL] [Abstract][Full Text] [Related]
5. Atomic Crystal Facet Engineering of Core-Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. Su K; Zhang H; Qian S; Li J; Zhu J; Tang Y; Qiu X ACS Nano; 2021 Mar; 15(3):5178-5188. PubMed ID: 33588529 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of bimetallic Pd-Pt nanocrystals for highly efficient methanol oxidation electrocatalysts. Pramadewandaru RK; Lee YW; Hong JW RSC Adv; 2023 Sep; 13(39):27046-27053. PubMed ID: 37693086 [TBL] [Abstract][Full Text] [Related]
7. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Porter NS; Wu H; Quan Z; Fang J Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the surface compositions of Pd@Pt Zhai P; Shi Y; Wang Q; Xia Y; Ding K Nanoscale; 2021 Nov; 13(44):18498-18506. PubMed ID: 34730167 [TBL] [Abstract][Full Text] [Related]
9. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction. Chen D; Ye F; Liu H; Yang J Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897 [TBL] [Abstract][Full Text] [Related]
10. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals. Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744 [TBL] [Abstract][Full Text] [Related]
11. A hydride-induced-reduction strategy for fabricating palladium-based core-shell bimetallic nanocrystals. Wang X; Wu B; Chen G; Zhao Y; Liu P; Dai Y; Zheng N Nanoscale; 2014 Jun; 6(12):6798-804. PubMed ID: 24827462 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction. Choi SI; Shao M; Lu N; Ruditskiy A; Peng HC; Park J; Guerrero S; Wang J; Kim MJ; Xia Y ACS Nano; 2014 Oct; 8(10):10363-71. PubMed ID: 25247667 [TBL] [Abstract][Full Text] [Related]
13. A Surfactant-Free and General Strategy for the Synthesis of Bimetallic Core-Shell Nanocrystals on Reduced Graphene Oxide through Targeted Photodeposition. Liu Y; Ji Y; Li Q; Zhu Y; Peng J; Jia R; Lai Z; Shi L; Fan F; Zheng G; Huang L; Li C ACS Nano; 2023 Aug; 17(15):15085-15096. PubMed ID: 37497875 [TBL] [Abstract][Full Text] [Related]
14. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. Zhou M; Wang H; Vara M; Hood ZD; Luo M; Yang TH; Bao S; Chi M; Xiao P; Zhang Y; Xia Y J Am Chem Soc; 2016 Sep; 138(37):12263-70. PubMed ID: 27568848 [TBL] [Abstract][Full Text] [Related]
15. One-Pot Synthesis of Pd@Pt Lee CT; Wang H; Zhao M; Yang TH; Vara M; Xia Y Chemistry; 2019 Apr; 25(20):5322-5329. PubMed ID: 30768814 [TBL] [Abstract][Full Text] [Related]
16. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement. Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122 [TBL] [Abstract][Full Text] [Related]
17. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Guo S; Dong S; Wang E Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027 [TBL] [Abstract][Full Text] [Related]
18. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945 [TBL] [Abstract][Full Text] [Related]
19. Pt-Decorated Composition-Tunable Pd-Fe@Pd/C Core-Shell Nanoparticles with Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction. Xiong Y; Yang Y; DiSalvo FJ; Abruña HD J Am Chem Soc; 2018 Jun; 140(23):7248-7255. PubMed ID: 29779380 [TBL] [Abstract][Full Text] [Related]
20. Microstructural Evolution of Au@Pt Core-Shell Nanoparticles under Electrochemical Polarization. Hong W; Li CW ACS Appl Mater Interfaces; 2019 Aug; 11(34):30977-30986. PubMed ID: 31365226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]