BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37611151)

  • 1. Phosphate starvation: response mechanisms and solutions.
    Madison I; Gillan L; Peace J; Gabrieli F; Van den Broeck L; Jones JL; Sozzani R
    J Exp Bot; 2023 Nov; 74(21):6417-6430. PubMed ID: 37611151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis.
    Mo X; Liu G; Zhang Z; Lu X; Liang C; Tian J
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice.
    Lu H; Wang F; Wang Y; Lin R; Wang Z; Mao C
    Plant Cell Environ; 2023 Apr; 46(4):1104-1119. PubMed ID: 36208118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypes and Molecular Mechanisms Underlying the Root Response to Phosphate Deprivation in Plants.
    Ren M; Li Y; Zhu J; Zhao K; Wu Z; Mao C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants.
    Prathap V; Kumar A; Maheshwari C; Tyagi A
    Mol Biol Rep; 2022 Aug; 49(8):8071-8086. PubMed ID: 35318578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source.
    Rezakhani L; Motesharezadeh B; Tehrani MM; Etesami H; Mirseyed Hosseini H
    Ecotoxicol Environ Saf; 2019 May; 173():504-513. PubMed ID: 30802739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is prevalent in upland rice and enhances root growth and hastens low phosphate signaling in wheat.
    Kettenburg AT; Lopez MA; Yogendra K; Prior MJ; Rose T; Bimson S; Heuer S; Roy SJ; Bailey-Serres J
    Plant Cell Environ; 2023 Jul; 46(7):2187-2205. PubMed ID: 36946067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue specific transcript profiling of wheat phosphate transporter genes and its association with phosphate allocation in grains.
    Shukla V; Kaur M; Aggarwal S; Bhati KK; Kaur J; Mantri S; Pandey AK
    Sci Rep; 2016 Dec; 6():39293. PubMed ID: 27995999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice.
    Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X
    Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus.
    Yang SY; Lin WY; Hsiao YM; Chiou TJ
    Plant Cell; 2024 May; 36(5):1504-1523. PubMed ID: 38163641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in research on phosphate starvation signaling in plants.
    Puga MI; Poza-Carrión C; Martinez-Hevia I; Perez-Liens L; Paz-Ares J
    J Plant Res; 2024 May; 137(3):315-330. PubMed ID: 38668956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa).
    Wang S; Zhang S; Sun C; Xu Y; Chen Y; Yu C; Qian Q; Jiang DA; Qi Y
    New Phytol; 2014 Jan; 201(1):91-103. PubMed ID: 24111723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean.
    Xue YB; Xiao BX; Zhu SN; Mo XH; Liang CY; Tian J; Liao H; Miriam G
    J Exp Bot; 2017 Oct; 68(17):4951-4967. PubMed ID: 28992334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat.
    Secco D; Bouain N; Rouached A; Prom-U-Thai C; Hanin M; Pandey AK; Rouached H
    Crit Rev Biotechnol; 2017 Nov; 37(7):898-910. PubMed ID: 28076998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice.
    Gu M; Zhang J; Li H; Meng D; Li R; Dai X; Wang S; Liu W; Qu H; Xu G
    J Exp Bot; 2017 Jun; 68(13):3603-3615. PubMed ID: 28549191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules.
    Xue Y; Zhuang Q; Zhu S; Xiao B; Liang C; Liao H; Tian J
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30261621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root developmental adaptation to phosphate starvation: better safe than sorry.
    Péret B; Clément M; Nussaume L; Desnos T
    Trends Plant Sci; 2011 Aug; 16(8):442-50. PubMed ID: 21684794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of new genetic determinants of morphological plasticity in rice roots and shoots under phosphate starvation using GWAS.
    Mai NTP; Mai CD; Nguyen HV; Le KQ; Duong LV; Tran TA; To HTM
    J Plant Physiol; 2021 Feb; 257():153340. PubMed ID: 33388665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.