These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37612630)
1. "Sharing the matrix" - a cooperative strategy for survival in Salmonella enterica serovar Typhimurium. R KB; S SC; N SS BMC Microbiol; 2023 Aug; 23(1):230. PubMed ID: 37612630 [TBL] [Abstract][Full Text] [Related]
2. The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium. Sharma N; Das A; Raja P; Marathe SA Microbiol Spectr; 2022 Jun; 10(3):e0020222. PubMed ID: 35678575 [TBL] [Abstract][Full Text] [Related]
3. Salmonella enterica serovar Typhimurium STM1266 encodes a regulator of curli biofilm formation: the brfS gene. Kao S; Serfecz J; Sudhakar A; Likosky K; Romiyo V; Tursi S; Tükel Ç; Wilson JW FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36792064 [TBL] [Abstract][Full Text] [Related]
4. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. Baugh S; Ekanayaka AS; Piddock LJ; Webber MA J Antimicrob Chemother; 2012 Oct; 67(10):2409-17. PubMed ID: 22733653 [TBL] [Abstract][Full Text] [Related]
5. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499 [TBL] [Abstract][Full Text] [Related]
6. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. Lapidot A; Yaron S J Food Prot; 2009 Mar; 72(3):618-23. PubMed ID: 19343953 [TBL] [Abstract][Full Text] [Related]
7. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis. Aya Castañeda Mdel R; Sarnacki SH; Noto Llana M; López Guerra AG; Giacomodonato MN; Cerquetti MC Int J Food Microbiol; 2015 Jan; 193():15-22. PubMed ID: 25462918 [TBL] [Abstract][Full Text] [Related]
8. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Saldaña Z; Xicohtencatl-Cortes J; Avelino F; Phillips AD; Kaper JB; Puente JL; Girón JA Environ Microbiol; 2009 Apr; 11(4):992-1006. PubMed ID: 19187284 [TBL] [Abstract][Full Text] [Related]
9. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Gill MA; Rafique MW; Manan T; Slaeem S; Römling U; Matin A; Ahmad I Parasitol Res; 2018 Jul; 117(7):2283-2289. PubMed ID: 29797083 [TBL] [Abstract][Full Text] [Related]
10. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. Jonas K; Tomenius H; Kader A; Normark S; Römling U; Belova LM; Melefors O BMC Microbiol; 2007 Jul; 7():70. PubMed ID: 17650335 [TBL] [Abstract][Full Text] [Related]
11. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances. Wang R; Kalchayanand N; Schmidt JW; Harhay DM J Food Prot; 2013 Sep; 76(9):1513-22. PubMed ID: 23992495 [TBL] [Abstract][Full Text] [Related]
12. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Brown PK; Dozois CM; Nickerson CA; Zuppardo A; Terlonge J; Curtiss R Mol Microbiol; 2001 Jul; 41(2):349-63. PubMed ID: 11489123 [TBL] [Abstract][Full Text] [Related]
13. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Ahmad I; Rouf SF; Sun L; Cimdins A; Shafeeq S; Le Guyon S; Schottkowski M; Rhen M; Römling U Microb Cell Fact; 2016 Oct; 15(1):177. PubMed ID: 27756305 [TBL] [Abstract][Full Text] [Related]
15. Genetic Determinants of Griewisch KF; Pierce JG; Elfenbein JR Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769186 [TBL] [Abstract][Full Text] [Related]
16. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation. Malcova M; Hradecka H; Karpiskova R; Rychlik I Vet Microbiol; 2008 Jun; 129(3-4):360-6. PubMed ID: 18242887 [TBL] [Abstract][Full Text] [Related]
17. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. Grantcharova N; Peters V; Monteiro C; Zakikhany K; Römling U J Bacteriol; 2010 Jan; 192(2):456-66. PubMed ID: 19897646 [TBL] [Abstract][Full Text] [Related]
18. Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red. Cimdins A; Simm R Methods Mol Biol; 2017; 1657():225-241. PubMed ID: 28889298 [TBL] [Abstract][Full Text] [Related]
19. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Simm R; Ahmad I; Rhen M; Le Guyon S; Römling U Future Microbiol; 2014; 9(11):1261-82. PubMed ID: 25437188 [TBL] [Abstract][Full Text] [Related]