These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 3761318)
41. Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the O-demethylation processes. Mutlib AE; Nelson WL Drug Metab Dispos; 1990; 18(3):309-14. PubMed ID: 1974191 [TBL] [Abstract][Full Text] [Related]
42. Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the N-dealkylation processes. Mutlib AE; Nelson WL Drug Metab Dispos; 1990; 18(3):331-7. PubMed ID: 1974195 [TBL] [Abstract][Full Text] [Related]
43. Regio- and stereoselective propranolol metabolism by 15 forms of purified cytochromes P-450 from rat liver. Fujita S; Umeda S; Funae Y; Imaoka S; Abe H; Ishida R; Adachi T; Masuda M; Kazusaka A; Suzuki T J Pharmacol Exp Ther; 1993 Jan; 264(1):226-33. PubMed ID: 8423527 [TBL] [Abstract][Full Text] [Related]
44. Stereochemical aspects of itraconazole metabolism in vitro and in vivo. Kunze KL; Nelson WL; Kharasch ED; Thummel KE; Isoherranen N Drug Metab Dispos; 2006 Apr; 34(4):583-90. PubMed ID: 16415110 [TBL] [Abstract][Full Text] [Related]
45. N-dealkylation of oxprenolol: formation of 3-aryloxypropane-1,2-diol, 3-aryloxylactic acid, and 2-aryloxyacetic acid metabolites in the rat. Nelson WL; Bartels MJ J Pharm Sci; 1985 Jan; 74(1):33-6. PubMed ID: 3981414 [TBL] [Abstract][Full Text] [Related]
46. Stereoselectivity of naphthalene epoxidation by mouse, rat, and hamster pulmonary, hepatic, and renal microsomal enzymes. Buckpitt AR; Castagnoli N; Nelson SD; Jones AD; Bahnson LS Drug Metab Dispos; 1987; 15(4):491-8. PubMed ID: 2888622 [TBL] [Abstract][Full Text] [Related]
47. Rat liver microsomal metabolism of propranolol: identification of seven metabolites by gas chromatography-mass spectrometry. Tindell GL; Walle T; Gaffney TE Life Sci II; 1972 Nov; 11(21):1029-36. PubMed ID: 4659696 [No Abstract] [Full Text] [Related]
48. Stereoselectivity in the aromatic hydroxylation of propranolol in the rat: use of deuterium labeling and pseudoracemic mixtures. Nelson WL; Bartels MJ Drug Metab Dispos; 1984; 12(3):382-4. PubMed ID: 6145569 [No Abstract] [Full Text] [Related]
49. [Effects of microsome enzyme induced by phenobarbarbital on the stereoselectivity of recemic propranolol glucuronidation metabolism]. Luan LJ; Shao Q; Zhang XH; Zeng S Zhejiang Da Xue Xue Bao Yi Xue Ban; 2004 Jan; 33(1):7-10. PubMed ID: 14966931 [TBL] [Abstract][Full Text] [Related]
50. Regioselectivity of hydroxylation of prostaglandins by liver microsomes supported by NADPH versus H2O2 in methylcholanthrene-treated and control rats: formation of novel prostaglandin metabolites. Holm KA; Engell RJ; Kupfer D Arch Biochem Biophys; 1985 Mar; 237(2):477-89. PubMed ID: 3856417 [TBL] [Abstract][Full Text] [Related]
51. Effect of omega-trifluorination on the microsomal metabolism of ethyl and pent-1-yl p-nitrophenyl ether. Baker MH; Foster AB; Leclercq F; Jarman M; Rowlands MG; Turner JC Xenobiotica; 1986 Mar; 16(3):195-203. PubMed ID: 3705616 [TBL] [Abstract][Full Text] [Related]
52. CYP2D-related metabolism in animals of the Canoidea superfamily - species differences. Ishizuka M; Lee JJ; Masuda M; Akahori F; Kazusaka A; Fujita S Vet Res Commun; 2006 Jul; 30(5):505-12. PubMed ID: 16755362 [TBL] [Abstract][Full Text] [Related]
53. Hydroxylation of 4,4'-methylenebis(2-chloroaniline) by canine, guinea pig, and rat liver microsomes. Chen TH; Kuslikis BI; Braselton WE Drug Metab Dispos; 1989; 17(4):406-13. PubMed ID: 2571481 [TBL] [Abstract][Full Text] [Related]
54. Metabolism of halazepam by rat liver microsomes: stereoselective formation and N-dealkylation of 3-hydroxyhalazepam. Lu XL; Yang SK Chirality; 1990; 2(1):1-9. PubMed ID: 2400636 [TBL] [Abstract][Full Text] [Related]
55. Biotransformation of terodiline. III. Opposed stereoselectivity in the benzylic and aromatic hydroxylations in rat liver microsomes. Lindeke B; Ericsson O; Jönsson A; Noren B; Strömberg S; Vangbo B Xenobiotica; 1987 Nov; 17(11):1269-78. PubMed ID: 3433799 [TBL] [Abstract][Full Text] [Related]
56. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Masubuchi Y; Hosokawa S; Horie T; Suzuki T; Ohmori S; Kitada M; Narimatsu S Drug Metab Dispos; 1994; 22(6):909-15. PubMed ID: 7895609 [TBL] [Abstract][Full Text] [Related]
57. Species differences for stereoselective hydrolysis of propranolol prodrugs in plasma and liver. Yoshigae Y; Imai T; Horita A; Otagiri M Chirality; 1997; 9(7):661-6. PubMed ID: 9366026 [TBL] [Abstract][Full Text] [Related]
58. New ring-hydroxylated metabolites of propranolol: species differences and stereospecific 7-hydroxylation. Walle T; Oatis JE; Walle UK; Knapp DR Drug Metab Dispos; 1982; 10(2):122-7. PubMed ID: 6124396 [TBL] [Abstract][Full Text] [Related]
59. Arachidonic acid metabolism in the marine fish Stenotomus chrysops (Scup) and the effects of cytochrome P450 1A inducers. Schlezinger JJ; Parker C; Zeldin DC; Stegeman JJ Arch Biochem Biophys; 1998 May; 353(2):265-75. PubMed ID: 9606961 [TBL] [Abstract][Full Text] [Related]
60. Carbinolamines, imines, and oxazolidines from fluorinated propranolol analogs. (19)F NMR and mass spectral characterization and evidence for formation as intermediates in cytochrome P450-catalyzed N-dealkylation. Upthagrove AL; Nelson WL Drug Metab Dispos; 2001 Aug; 29(8):1114-22. PubMed ID: 11454730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]