BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37613880)

  • 1. Dynamic Evolution of Structure and Chemical Bonding in Atomically Dispersed Catalysts via In Situ Electron Microscopy.
    Tieu P; Dai S; Zang W; Pan X
    Microsc Microanal; 2023 Jul; 29(Supplement_1):1602-1604. PubMed ID: 37613880
    [No Abstract]   [Full Text] [Related]  

  • 2. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Synergistic Capture-Bonding Superassembly of Atomically Dispersed Catalysts on Micropore-Vacancy Frameworks.
    Liang Q; Li W; Xie L; He Y; Qiu B; Zeng H; Zhou S; Zeng J; Liu T; Yan M; Liang K; Terasaki O; Jiang L; Kong B
    Nano Lett; 2022 Apr; 22(7):2889-2897. PubMed ID: 35315667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Methanol Carbonylation to Acetic Acid on Heterogeneous Atomically Dispersed ReO
    Qi J; Finzel J; Robatjazi H; Xu M; Hoffman AS; Bare SR; Pan X; Christopher P
    J Am Chem Soc; 2020 Aug; 142(33):14178-14189. PubMed ID: 32689793
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Quan W; Ruan X; Lin Y; Luo J; Huang Y
    Nanoscale; 2021 Nov; 13(44):18677-18683. PubMed ID: 34734936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction.
    Kim JH; Shin D; Lee J; Baek DS; Shin TJ; Kim YT; Jeong HY; Kwak JH; Kim H; Joo SH
    ACS Nano; 2020 Feb; 14(2):1990-2001. PubMed ID: 31999424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal-Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis.
    Babucci M; Guntida A; Gates BC
    Chem Rev; 2020 Nov; 120(21):11956-11985. PubMed ID: 33104349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction.
    Kim JH; Shin D; Kim J; Lim JS; Paidi VK; Shin TJ; Jeong HY; Lee KS; Kim H; Joo SH
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20528-20534. PubMed ID: 34263519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Atomically Dispersed Sn Protuberance.
    Zhang L; Zhou H; Yang X; Zhang S; Zhang H; Yang X; Su X; Zhang J; Lin Z
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217473. PubMed ID: 36738169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A vicinal effect for promoting catalysis of Pd
    Liu P; Zhao Y; Qin R; Gu L; Zhang P; Fu G; Zheng N
    Sci Bull (Beijing); 2018 Jun; 63(11):675-682. PubMed ID: 36658816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural evolution of atomically dispersed Pt catalysts dictates reactivity.
    DeRita L; Resasco J; Dai S; Boubnov A; Thang HV; Hoffman AS; Ro I; Graham GW; Bare SR; Pacchioni G; Pan X; Christopher P
    Nat Mater; 2019 Jul; 18(7):746-751. PubMed ID: 31011216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction.
    Wang J; Tan HY; Kuo TR; Lin SC; Hsu CS; Zhu Y; Chu YC; Chen TL; Lee JF; Chen HM
    Small; 2021 Apr; 17(16):e2005713. PubMed ID: 33538084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activating Basal Surface of Palladium by Electronic Modulation via Atomically Dispersed Nitrogen Doping for High-Efficiency Hydrogen Evolution Reaction.
    Yao Q; Yan K; Zhu W; Zheng Y
    J Phys Chem Lett; 2021 Aug; 12(30):7373-7378. PubMed ID: 34324349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomically dispersed Palladium-Ethylene Glycol- Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism.
    Liu J; Li F; Lu J; Li R; Wang Y; Wang Y; Zhang X; Fan C; Zhang R
    J Colloid Interface Sci; 2021 Dec; 603():17-24. PubMed ID: 34186395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting Thermal Stability of Volatile Os Catalysts by Downsizing to Atomically Dispersed Species.
    Kim JH; Yoon S; Baek DS; Kim J; Kim J; An K; Joo SH
    JACS Au; 2022 Aug; 2(8):1811-1817. PubMed ID: 36032528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Formation and Structural Evolution of Platinum Single-Site Catalysts for the Hydrogen Evolution Reaction.
    Tang P; Lee HJ; Hurlbutt K; Huang PY; Narayanan S; Wang C; Gianolio D; Arrigo R; Chen J; Warner JH; Pasta M
    ACS Catal; 2022 Mar; 12(5):3173-3180. PubMed ID: 35558899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality.
    Resasco J; Christopher P
    J Phys Chem Lett; 2020 Dec; 11(23):10114-10123. PubMed ID: 33191757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically Dispersed NiN
    Hou Q; Liu K; Al-Maksoud W; Huang Y; Ding D; Lei Y; Zhang Y; Lin B; Zheng L; Liu M; Basset JM; Chen Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16809-16817. PubMed ID: 36972197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts.
    Wang L; Chen MX; Yan QQ; Xu SL; Chu SQ; Chen P; Lin Y; Liang HW
    Sci Adv; 2019 Oct; 5(10):eaax6322. PubMed ID: 31692785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts.
    Liu S; Wang M; Yang X; Shi Q; Qiao Z; Lucero M; Ma Q; More KL; Cullen DA; Feng Z; Wu G
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21698-21705. PubMed ID: 32820860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.