BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37614478)

  • 21. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5924-7. PubMed ID: 17946729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method to measure the accuracy of loads in knee-ankle-foot orthoses using conventional gait analysis, applied to persons with poliomyelitis.
    Andrysek J; Redekop S; Matsui NC; Kooy J; Hubbard S
    Arch Phys Med Rehabil; 2008 Jul; 89(7):1372-9. PubMed ID: 18586141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and analysis of knee-ankle-foot orthosis design requirements based on a feedback survey of orthosis users in India.
    Bapat GM; Sujatha S
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):82-90. PubMed ID: 29265890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of specialist care lower limb orthoses on personal goal attainment and walking ability in adults with neuromuscular disorders.
    van Duijnhoven E; Koopman FS; Ploeger HE; Nollet F; Brehm MA
    PLoS One; 2023; 18(1):e0279292. PubMed ID: 36652463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical and energetic effects of a stance-control orthotic knee joint.
    Zissimopoulos A; Fatone S; Gard SA
    J Rehabil Res Dev; 2007; 44(4):503-13. PubMed ID: 18247247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthotic management of instability of the knee related to neuromuscular and central nervous system disorders: qualitative interview study of patient perspectives.
    McCaughan D; Booth A; Jackson C; Lalor S; Ramdharry G; O'Connor RJ; Phillips M; Bowers R; McDaid C
    BMJ Open; 2019 Oct; 9(10):e029313. PubMed ID: 31628124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic review of the evidence on orthotic devices for the management of knee instability related to neuromuscular and central nervous system disorders.
    McDaid C; Fayter D; Booth A; O'Connor J; Rodriguez-Lopez R; McCaughan D; Bowers R; Iglesias CP; Lalor S; O'Connor RJ; Phillips M; Ramdharry G
    BMJ Open; 2017 Sep; 7(9):e015927. PubMed ID: 28877943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, construction, and evaluation of "sensor lock": an electromechanical stance control knee joint.
    Arazpour M; Ahmadi Bani M; Baniasad M; Samadian M; Golchin N
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):226-233. PubMed ID: 28350511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy expenditure of paraplegic patients standing and walking with two knee-ankle-foot orthoses.
    Merkel KD; Miller NE; Westbrook PR; Merritt JL
    Arch Phys Med Rehabil; 1984 Mar; 65(3):121-4. PubMed ID: 6703885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and evaluation of a stance-control knee-ankle-foot orthosis knee joint.
    Yakimovich T; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):361-9. PubMed ID: 17009496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical function and activity, pain, and health status in adults with myelomeningocele after orthotic management from childhood: a descriptive study.
    Bartonek Å; Eriksson M
    BMC Musculoskelet Disord; 2023 Jul; 24(1):545. PubMed ID: 37400860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of Gait Events and Temporal Gait Parameters for Persons with a Knee-Ankle-Foot Orthosis.
    Yang S; Koo B; Lee S; Jang DJ; Shin H; Choi HJ; Kim Y
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of a variable resistance orthotic knee joint.
    Herbert-Copley A; Lemaire ED; Baddour N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2210-2213. PubMed ID: 28268770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T; Lemaire ED; Kofman J
    J Rehabil Res Dev; 2009; 46(2):257-67. PubMed ID: 19533539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):258-68. PubMed ID: 24608684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of orthoses on muscle activity and synergy during gait.
    Hashiguchi Y; Goto R; Naka T
    PLoS One; 2023; 18(2):e0281541. PubMed ID: 36757940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bracing: Upper and Lower Limb Orthoses.
    Wheeler CA
    Phys Med Rehabil Clin N Am; 2021 Aug; 32(3):509-526. PubMed ID: 34175010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the quality of life in individuals with spinal cord injury wearing either reciprocating gait orthosis or hip knee ankle foot orthosis: a cross-sectional study.
    Barati K; Kamyab M; Kamali M
    Disabil Rehabil Assist Technol; 2021 Aug; 16(6):562-566. PubMed ID: 32188322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematic and kinetic benefits of implantable peroneal nerve stimulation in people with post-stroke drop foot using an ankle-foot orthosis.
    Berenpas F; Schiemanck S; Beelen A; Nollet F; Weerdesteyn V; Geurts A
    Restor Neurol Neurosci; 2018; 36(4):547-558. PubMed ID: 29889089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.