These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37614896)

  • 1. Inexpensive DIY Bioprinting in a Secondary School Setting.
    Sun LMP; To AC
    J Microbiol Biol Educ; 2023 Aug; 24(2):. PubMed ID: 37614896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a high-performance open-source 3D bioprinter.
    Tashman JW; Shiwarski DJ; Feinberg AW
    Sci Rep; 2022 Dec; 12(1):22652. PubMed ID: 36587043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open-source hybrid 3D-bioprinter for simultaneous printing of thermoplastics and hydrogels.
    Koch F; Thaden O; Tröndle K; Zengerle R; Zimmermann S; Koltay P
    HardwareX; 2021 Oct; 10():e00230. PubMed ID: 35607684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting.
    Sanz-Garcia A; Sodupe-Ortega E; Pernía-Espinoza A; Shimizu T; Escobedo-Lucea C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33066265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.
    Reid JA; Mollica PA; Johnson GD; Ogle RC; Bruno RD; Sachs PC
    Biofabrication; 2016 Jun; 8(2):025017. PubMed ID: 27271208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication.
    Kostenko A; Connon CJ; Swioklo S
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation.
    Ioannidis K; Danalatos RI; Champeris Tsaniras S; Kaplani K; Lokka G; Kanellou A; Papachristou DJ; Bokias G; Lygerou Z; Taraviras S
    Front Bioeng Biotechnol; 2020; 8():580889. PubMed ID: 33251196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication.
    Kahl M; Gertig M; Hoyer P; Friedrich O; Gilbert DF
    Front Bioeng Biotechnol; 2019; 7():184. PubMed ID: 31417899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mSLAb - An open-source masked stereolithography (mSLA) bioprinter.
    Kaufmann BK; Rudolph M; Pechtl M; Wildenburg G; Hayden O; Clausen-Schaumann H; Sudhop S
    HardwareX; 2024 Sep; 19():e00543. PubMed ID: 38988373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 16. Design and implementation of a low cost bio-printer modification, allowing for switching between plastic and gel extrusion.
    Krige A; Haluška J; Rova U; Christakopoulos P
    HardwareX; 2021 Apr; 9():e00186. PubMed ID: 35492054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
    Duan B
    Ann Biomed Eng; 2017 Jan; 45(1):195-209. PubMed ID: 27066785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing.
    Roshangar L; Rad JS; Kheirjou R; Khosroshahi AF
    J Tissue Eng Regen Med; 2021 Jun; 15(6):546-555. PubMed ID: 33779071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability.
    Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P
    Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.