These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

897 related articles for article (PubMed ID: 37614971)

  • 1. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning.
    Huang J; Liu X; Jin W
    Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models.
    Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z
    Front Public Health; 2022; 10():1086339. PubMed ID: 36711330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers.
    Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T
    Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database.
    Guo J; Cheng H; Wang Z; Qiao M; Li J; Lyu J
    Front Neurol; 2023; 14():1290117. PubMed ID: 38162445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care.
    Wei H; Huang X; Zhang Y; Jiang G; Ding R; Deng M; Wei L; Yuan H
    Front Neurol; 2024; 15():1385013. PubMed ID: 38915793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of subjective cognitive decline after corpus callosum infarction by an interpretable machine learning-derived early warning strategy.
    Xu Y; Sun X; Liu Y; Huang Y; Liang M; Sun R; Yin G; Song C; Ding Q; Du B; Bi X
    Front Neurol; 2023; 14():1123607. PubMed ID: 37416313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia.
    Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL
    Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study.
    Tang D; Ma C; Xu Y
    Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study.
    Hu C; Li L; Huang W; Wu T; Xu Q; Liu J; Hu B
    Infect Dis Ther; 2022 Jun; 11(3):1117-1132. PubMed ID: 35399146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of 28-Day All-Cause Mortality in Heart Failure Patients with Clostridioides difficile Infection Using Machine Learning Models: Evidence from the MIMIC-IV Database.
    Shi C; Jie Q; Zhang H; Zhang X; Chu W; Chen C; Zhang Q; Hu Z
    Cardiology; 2024 Aug; ():1. PubMed ID: 39154641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure.
    Chen Z; Li T; Guo S; Zeng D; Wang K
    Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study.
    Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H
    JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Four Machine Learning Techniques for Prediction of Intensive Care Unit Length of Stay in Heart Transplantation Patients.
    Wang K; Yan LZ; Li WZ; Jiang C; Wang NN; Zheng Q; Dong NG; Shi JW
    Front Cardiovasc Med; 2022; 9():863642. PubMed ID: 35800164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.