These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
899 related articles for article (PubMed ID: 37614971)
21. Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis. He B; Qiu Z Front Artif Intell; 2024; 7():1348907. PubMed ID: 39040922 [TBL] [Abstract][Full Text] [Related]
22. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease. Huang D; Gong L; Wei C; Wang X; Liang Z Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628 [TBL] [Abstract][Full Text] [Related]
23. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153 [TBL] [Abstract][Full Text] [Related]
24. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631 [TBL] [Abstract][Full Text] [Related]
25. Interpretable mortality prediction model for ICU patients with pneumonia: using shapley additive explanation method. Li J; Zhang Y; He S; Tang Y BMC Pulm Med; 2024 Sep; 24(1):447. PubMed ID: 39272037 [TBL] [Abstract][Full Text] [Related]
26. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
27. Survival prediction for heart failure complicated by sepsis: based on machine learning methods. Zhang Q; Xu L; He W; Lai X; Huang X Front Med (Lausanne); 2024; 11():1410702. PubMed ID: 39421876 [TBL] [Abstract][Full Text] [Related]
28. Development and Validation of an Interpretable Machine Learning Prediction Model for Total Pathological Complete Response after Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer: Multicenter Retrospective Analysis. Zhang Z; Cao B; Wu J; Feng C J Cancer; 2024; 15(15):5058-5071. PubMed ID: 39132160 [No Abstract] [Full Text] [Related]
29. Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study. Yang T; Hu Y; Pan X; Lou S; Zou J; Deng Q; Zhang Q; Zhou J; Zhu J Brain Sci; 2023 Mar; 13(4):. PubMed ID: 37190522 [TBL] [Abstract][Full Text] [Related]
30. Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning. Wang Y; Pan Z; Li S; Cai H; Huang Y; Zhuang J; Liu X; Lu X; Guan G Eur J Surg Oncol; 2024 Dec; 50(12):108738. PubMed ID: 39395242 [TBL] [Abstract][Full Text] [Related]
31. An interpretable machine learning model for stroke recurrence in patients with symptomatic intracranial atherosclerotic arterial stenosis. Gao Y; Li ZA; Zhai XY; Han L; Zhang P; Cheng SJ; Yue JY; Cui HK Front Neurosci; 2023; 17():1323270. PubMed ID: 38260008 [TBL] [Abstract][Full Text] [Related]
32. Predictive etiological classification of acute ischemic stroke through interpretable machine learning algorithms: a multicenter, prospective cohort study. Chen S; Yang X; Gu H; Wang Y; Xu Z; Jiang Y; Wang Y BMC Med Res Methodol; 2024 Sep; 24(1):199. PubMed ID: 39256656 [TBL] [Abstract][Full Text] [Related]
33. Predicting cerebral edema in patients with spontaneous intracerebral hemorrhage using machine learning. Xu J; Yuan C; Yu G; Li H; Dong Q; Mao D; Zhan C; Yan X Front Neurol; 2024; 15():1419608. PubMed ID: 39421568 [TBL] [Abstract][Full Text] [Related]
34. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury. Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651 [TBL] [Abstract][Full Text] [Related]
35. Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis. Liu F; Yao J; Liu C; Shou S BMC Surg; 2023 Sep; 23(1):267. PubMed ID: 37658375 [TBL] [Abstract][Full Text] [Related]
36. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
37. Explainable machine learning and online calculators to predict heart failure mortality in intensive care units. Chen AT; Zhang Y; Zhang J ESC Heart Fail; 2024 Sep; ():. PubMed ID: 39300773 [TBL] [Abstract][Full Text] [Related]
38. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. Pan P; Li Y; Xiao Y; Han B; Su L; Su M; Li Y; Zhang S; Jiang D; Chen X; Zhou F; Ma L; Bao P; Xie L J Med Internet Res; 2020 Nov; 22(11):e23128. PubMed ID: 33035175 [TBL] [Abstract][Full Text] [Related]
39. Prediction of 30-day mortality in heart failure patients with hypoxic hepatitis: Development and external validation of an interpretable machine learning model. Sun R; Wang X; Jiang H; Yan Y; Dong Y; Yan W; Luo X; Miu H; Qi L; Huang Z Front Cardiovasc Med; 2022; 9():1035675. PubMed ID: 36386374 [TBL] [Abstract][Full Text] [Related]
40. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage. Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]