These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37615027)
1. Production and Nguyen KD; Kajiura H; Kamiya R; Yoshida T; Misaki R; Fujiyama K Front Plant Sci; 2023; 14():1215580. PubMed ID: 37615027 [No Abstract] [Full Text] [Related]
2. BGAL1 depletion boosts the level of β-galactosylation of N- and O-glycans in N. benthamiana. Kriechbaum R; Ziaee E; Grünwald-Gruber C; Buscaill P; van der Hoorn RAL; Castilho A Plant Biotechnol J; 2020 Jul; 18(7):1537-1549. PubMed ID: 31837192 [TBL] [Abstract][Full Text] [Related]
3. Unexpected Arabinosylation after Humanization of Plant Protein Bohlender LL; Parsons J; Hoernstein SNW; Bangert N; Rodríguez-Jahnke F; Reski R; Decker EL Front Bioeng Biotechnol; 2022; 10():838365. PubMed ID: 35252146 [TBL] [Abstract][Full Text] [Related]
4. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Hills AE; Patel A; Boyd P; James DC Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148 [TBL] [Abstract][Full Text] [Related]
5. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
6. β1,3-galactosyltransferase on chromosome 6 is essential for the formation of Lewis Jung JW; Kim SR Transgenic Res; 2023 Oct; 32(5):487-496. PubMed ID: 37540410 [TBL] [Abstract][Full Text] [Related]
7. Characterization of plants expressing the human β1,4-galactosyltrasferase gene. Schneider J; Castilho A; Pabst M; Altmann F; Gruber C; Strasser R; Gattinger P; Seifert GJ; Steinkellner H Plant Physiol Biochem; 2015 Jul; 92():39-47. PubMed ID: 25900423 [TBL] [Abstract][Full Text] [Related]
9. Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles. Kittur FS; Hung CY; Zhu C; Shajahan A; Azadi P; Thomas MD; Pearce JL; Gruber C; Kallolimath S; Xie J Int J Biol Macromol; 2020 Aug; 157():158-169. PubMed ID: 32348856 [TBL] [Abstract][Full Text] [Related]
10. Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody. Castilho A; Bohorova N; Grass J; Bohorov O; Zeitlin L; Whaley K; Altmann F; Steinkellner H PLoS One; 2011; 6(10):e26040. PubMed ID: 22039433 [TBL] [Abstract][Full Text] [Related]
11. Galactose-extended glycans of antibodies produced by transgenic plants. Bakker H; Bardor M; Molthoff JW; Gomord V; Elbers I; Stevens LH; Jordi W; Lommen A; Faye L; Lerouge P; Bosch D Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2899-904. PubMed ID: 11226338 [TBL] [Abstract][Full Text] [Related]
12. Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana. Shin YJ; Castilho A; Dicker M; Sádio F; Vavra U; Grünwald-Gruber C; Kwon TH; Altmann F; Steinkellner H; Strasser R Plant Biotechnol J; 2017 Feb; 15(2):197-206. PubMed ID: 27421111 [TBL] [Abstract][Full Text] [Related]
13. Transient Production of Human β-Glucocerebrosidase With Mannosidic-Type Uthailak N; Kajiura H; Misaki R; Fujiyama K Front Plant Sci; 2021; 12():683762. PubMed ID: 34163514 [TBL] [Abstract][Full Text] [Related]
14. Monomeric IgA can be produced in planta as efficient as IgG, yet receives different N-glycans. Westerhof LB; Wilbers RH; van Raaij DR; Nguyen DL; Goverse A; Henquet MG; Hokke CH; Bosch D; Bakker J; Schots A Plant Biotechnol J; 2014 Dec; 12(9):1333-42. PubMed ID: 25196296 [TBL] [Abstract][Full Text] [Related]
15. Trastuzumab and Pertuzumab Plant Biosimilars: Modification of Asn297-linked Glycan of the mAbs Produced in a Plant with Fucosyltransferase and Xylosyltransferase Gene Knockouts. Komarova TV; Sheshukova EV; Kosobokova EN; Serebryakova MV; Kosorukov VS; Tashlitsky VN; Dorokhov YL Biochemistry (Mosc); 2017 Apr; 82(4):510-520. PubMed ID: 28371609 [TBL] [Abstract][Full Text] [Related]
16. Promoter Choice Impacts the Efficiency of Plant Glyco-Engineering. Kallolimath S; Gruber C; Steinkellner H; Castilho A Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28755501 [TBL] [Abstract][Full Text] [Related]
17. Expression of natural human β1,4-GalT1 variants and of non-mammalian homologues in plants leads to differences in galactosylation of N-glycans. Hesselink T; Rouwendal GJ; Henquet MG; Florack DE; Helsper JP; Bosch D Transgenic Res; 2014 Oct; 23(5):717-28. PubMed ID: 25082356 [TBL] [Abstract][Full Text] [Related]
18. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095 [TBL] [Abstract][Full Text] [Related]
19. Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation. Lombardi R; Donini M; Villani ME; Brunetti P; Fujiyama K; Kajiura H; Paul M; Ma JK; Benvenuto E Transgenic Res; 2012 Oct; 21(5):1005-21. PubMed ID: 22238065 [TBL] [Abstract][Full Text] [Related]
20. Production of recombinant β-glucocerebrosidase in wild-type and glycoengineered transgenic Nicotiana benthamiana root cultures with different N-glycan profiles. Uthailak N; Kajiura H; Misaki R; Fujiyama K J Biosci Bioeng; 2022 May; 133(5):481-488. PubMed ID: 35190260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]