These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37615053)

  • 1. Multifunctional one-droplet microfluidic chemosensing of ractopamine in real samples: a user-oriented flexible nano-architecture for on-site food and pharmaceutical analysis using optical sensors.
    Baghban HN; Hasanzadeh M
    Anal Methods; 2023 Sep; 15(35):4506-4517. PubMed ID: 37615053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A portable colorimetric chemosensing regime for ractopamine in chicken samples using μPCD decorated by silver nanoprisms.
    Baghban HN; Hasanzadeh M; Liu Y; Seidi F
    RSC Adv; 2022 Sep; 12(39):25675-25686. PubMed ID: 36199355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles.
    Chen XY; Ha W; Shi YP
    Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic chip and chiroptical gold nanoparticle-based colorimetric sensor for enantioselective detection of L-tryptophan.
    Karimian M; Dashtian K; Zare-Dorabei R
    Talanta; 2024 Jan; 266(Pt 2):125138. PubMed ID: 37657378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual Screening and Colorimetric Determination of Clenbuterol and Ractopamine Using Unmodified Gold Nanoparticles as Probe.
    Luo Y; Liu X; Guo J; Gao H; Li Y; Xu J; Shen F; Sun C
    J Nanosci Nanotechnol; 2016 Jan; 16(1):548-54. PubMed ID: 27398486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD) towards selective and sensitive recognition of uric acid by AuNPs: an innovative portable tool for the rapid and low-cost identification of clinically relevant biomolecules.
    Farshchi F; Saadati A; Hasanzadeh M; Seidi F
    RSC Adv; 2021 Aug; 11(44):27298-27308. PubMed ID: 35480692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a hydrophobic-hydrophilic open-droplet microfluidic chemosensor towards colorimetric/spectrophotometric recognition of quetiapine fumarate: a cost-benefit method for biomedical analysis using a smartphone.
    Baghban HN; Ghaseminasab K; Hasanzadeh M
    Anal Methods; 2023 Jul; 15(29):3549-3561. PubMed ID: 37449384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin.
    Xu R; Cheng Y; Qi X; Li X; Zhang Z; Chen L; Sun T; Gao Z; Zhu M
    Anal Chim Acta; 2022 Oct; 1230():340377. PubMed ID: 36192060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine.
    Han S; Zhou T; Yin B; He P
    Mikrochim Acta; 2018 Mar; 185(4):210. PubMed ID: 29594705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing.
    Duan J; He D; Wang W; Liu Y; Wu H; Wang Y; Fu M; Li S
    Talanta; 2013 Oct; 115():992-8. PubMed ID: 24054693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples.
    Hu X; Chang K; Wang S; Sun X; Hu J; Jiang M
    PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric sensing of iodide ions based on unmodified gold nanoparticles and the distinctive antiaggregation-to-aggregation process.
    Sun X; Zhao Y; Cui X; Liu R; Yu M; Fei Q; Liu Q; Feng G; Shan H; Huan Y
    Luminescence; 2020 Nov; 35(7):1036-1042. PubMed ID: 32515169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity.
    Li Y; Wu P; Xu H; Zhang H; Zhong X
    Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA hydrogels combined with microfluidic chips for melamine detection.
    Wang Z; Chen R; Hou Y; Qin Y; Li S; Yang S; Gao Z
    Anal Chim Acta; 2022 Oct; 1228():340312. PubMed ID: 36127008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe.
    Zhou Y; Wang P; Su X; Zhao H; He Y
    Talanta; 2013 Aug; 112():20-5. PubMed ID: 23708531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement.
    Bener M; Şen FB; Apak R
    Talanta; 2018 Sep; 187():148-155. PubMed ID: 29853028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au Nanoparticles Functionalized Covalent-Organic-Framework-Based Electrochemical Sensor for Sensitive Detection of Ractopamine.
    Yang S; Yang R; He J; Zhang Y; Yuan Y; Yue T; Sheng Q
    Foods; 2023 Feb; 12(4):. PubMed ID: 36832917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-in-a-syringe using gold nanoparticles for rapid colorimetric chiral discrimination of enantiomers.
    Zor E; Bekar N
    Biosens Bioelectron; 2017 May; 91():211-216. PubMed ID: 28011416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel biogenic gold nanoparticles stabilized on poly(styrene-co-maleic anhydride) as an effective material for reduction of nitrophenols and colorimetric detection of Pb(II).
    Nguyen THA; Le TTV; Huynh BA; Nguyen NV; Le VT; Doan VD; Tran VA; Nguyen AT; Cao XT; Vasseghian Y
    Environ Res; 2022 Sep; 212(Pt B):113281. PubMed ID: 35461847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.