These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37615296)
1. Hybrid Biofabrication of Heterogeneous 3D Constructs Using Low-Viscosity Bioinks. Kim SJ; Lee G; Park JK ACS Appl Mater Interfaces; 2023 Sep; 15(35):41247-41257. PubMed ID: 37615296 [TBL] [Abstract][Full Text] [Related]
2. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting Using Universal Fugitive Network Bioinks. Arslan H; Davuluri A; Nguyen HH; So BR; Lee J; Jeon J; Yum K ACS Appl Bio Mater; 2024 Oct; 7(10):7040-7050. PubMed ID: 39291381 [TBL] [Abstract][Full Text] [Related]
4. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
5. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
6. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
7. Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol. Lee G; Kim SJ; Chun H; Park JK Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507302 [TBL] [Abstract][Full Text] [Related]
8. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. Hull SM; Brunel LG; Heilshorn SC Adv Mater; 2022 Jan; 34(2):e2103691. PubMed ID: 34672027 [TBL] [Abstract][Full Text] [Related]
9. Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Haring AP; Thompson EG; Tong Y; Laheri S; Cesewski E; Sontheimer H; Johnson BN Biofabrication; 2019 Feb; 11(2):025009. PubMed ID: 30695770 [TBL] [Abstract][Full Text] [Related]
10. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
11. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364 [TBL] [Abstract][Full Text] [Related]
12. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution. Schwartz R; Malpica M; Thompson GL; Miri AK J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543 [TBL] [Abstract][Full Text] [Related]
14. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
16. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
18. FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization. Kreimendahl F; Kniebs C; Tavares Sobreiro AM; Schmitz-Rode T; Jockenhoevel S; Thiebes AL J Appl Biomater Funct Mater; 2021; 19():22808000211028808. PubMed ID: 34282976 [TBL] [Abstract][Full Text] [Related]
19. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]
20. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]