These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37615296)
21. Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting. Trucco D; Sharma A; Manferdini C; Gabusi E; Petretta M; Desando G; Ricotti L; Chakraborty J; Ghosh S; Lisignoli G ACS Biomater Sci Eng; 2021 Jul; 7(7):3306-3320. PubMed ID: 34101410 [TBL] [Abstract][Full Text] [Related]
22. Hydrogel-based reinforcement of 3D bioprinted constructs. Melchels FPW; Blokzijl MM; Levato R; Peiffer QC; de Ruijter M; Hennink WE; Vermonden T; Malda J Biofabrication; 2016 Jul; 8(3):035004. PubMed ID: 27431861 [TBL] [Abstract][Full Text] [Related]
23. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
25. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
26. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs. Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961 [TBL] [Abstract][Full Text] [Related]
27. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552 [TBL] [Abstract][Full Text] [Related]
28. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823 [TBL] [Abstract][Full Text] [Related]
29. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631 [TBL] [Abstract][Full Text] [Related]
30. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862 [TBL] [Abstract][Full Text] [Related]
31. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Levato R; Visser J; Planell JA; Engel E; Malda J; Mateos-Timoneda MA Biofabrication; 2014 Sep; 6(3):035020. PubMed ID: 25048797 [TBL] [Abstract][Full Text] [Related]
32. Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering. Sodupe-Ortega E; Sanz-Garcia A; Pernia-Espinoza A; Escobedo-Lucea C Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103426 [TBL] [Abstract][Full Text] [Related]
33. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
34. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
35. Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths. Zhou K; Sun Y; Yang J; Mao H; Gu Z J Mater Chem B; 2022 Mar; 10(12):1897-1907. PubMed ID: 35212327 [TBL] [Abstract][Full Text] [Related]
37. Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs. Song S; Li Y; Huang J; Zhang Z Macromol Biosci; 2022 Sep; 22(9):e2200181. PubMed ID: 35778775 [TBL] [Abstract][Full Text] [Related]
38. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649 [TBL] [Abstract][Full Text] [Related]
39. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
40. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]