These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37615378)

  • 41. A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li
    Zuo Y; Li B; Jiang N; Chu W; Zhang H; Zou R; Xia D
    Adv Mater; 2018 Apr; 30(16):e1707255. PubMed ID: 29532965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interface Engineering via Regulating Electrolyte for High-Voltage Layered Oxide Cathodes-Based Li-Ion Batteries.
    Cheng F; Xu J; Wei P; Cheng Z; Liao M; Sun S; Xu Y; Li Q; Fang C; Lin Y; Han J; Huang Y
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206714. PubMed ID: 36808280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries.
    Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Cobalt-Free Li(Li
    Cheng X; Wei H; Hao W; Li H; Si H; An S; Zhu W; Jia G; Qiu X
    ChemSusChem; 2019 Mar; 12(6):1162-1168. PubMed ID: 30600937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heavy Fluorination via Ion Exchange Achieves High-Performance Li-Mn-O-F Layered Cathode for Li-Ion Batteries.
    Lu J; Cao B; Hu B; Liao Y; Qi R; Liu J; Zuo C; Xu S; Li Z; Chen C; Zhang M; Pan F
    Small; 2022 Feb; 18(6):e2103499. PubMed ID: 34850552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries.
    Luo D; Fang S; Tamiya Y; Yang L; Hirano S
    Small; 2016 Aug; 12(32):4421-30. PubMed ID: 27389965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical study on Y-doped Na
    Yin H; Huang J; Luo N; Zhang Y; Huang S
    Phys Chem Chem Phys; 2022 Jul; 24(26):16183-16192. PubMed ID: 35749066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzyme-Inspired Room-Temperature Lithium-Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds.
    Wang C; Zhang Z; Liu W; Zhang Q; Wang XG; Xie Z; Zhou Z
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17856-17863. PubMed ID: 32745360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Suppressing Singlet Oxygen Formation during the Charge Process of Li-O
    Lin Y; Yang Q; Geng F; Feng H; Chen M; Hu B
    J Phys Chem Lett; 2021 Oct; 12(42):10346-10352. PubMed ID: 34665633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insights into the Enhanced Structural and Thermal Stabilities of Nb-Substituted Lithium-Rich Layered Oxide Cathodes.
    Zhang C; Wei B; Jiang W; Wang M; Hu W; Liang C; Wang T; Chen L; Zhang R; Wang P; Wei W
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45619-45629. PubMed ID: 34530607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides.
    Hong J; Gent WE; Xiao P; Lim K; Seo DH; Wu J; Csernica PM; Takacs CJ; Nordlund D; Sun CJ; Stone KH; Passarello D; Yang W; Prendergast D; Ceder G; Toney MF; Chueh WC
    Nat Mater; 2019 Mar; 18(3):256-265. PubMed ID: 30718861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability.
    Ning F; Li B; Song J; Zuo Y; Shang H; Zhao Z; Yu Z; Chu W; Zhang K; Feng G; Wang X; Xia D
    Nat Commun; 2020 Oct; 11(1):4973. PubMed ID: 33009376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in Lithium-Oxygen Batteries Based on Lithium Hydroxide Formation and Decomposition.
    Zhang X; Dong P; Song MK
    Front Chem; 2022; 10():923936. PubMed ID: 35844634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Full Energy Range Resonant Inelastic X-ray Scattering of O
    Zhuo Z; Liu YS; Guo J; Chuang YD; Pan F; Yang W
    J Phys Chem Lett; 2020 Apr; 11(7):2618-2623. PubMed ID: 32154725
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revisiting the Na
    Zhang Y; Wu M; Ma J; Wei G; Ling Y; Zhang R; Huang Y
    ACS Cent Sci; 2020 Feb; 6(2):232-240. PubMed ID: 32123741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promoting the Reversible Oxygen Redox Reaction of Li-Excess Layered Cathode Materials with Surface Vanadium Cation Doping.
    Lee Y; Shin J; Kang H; Lee D; Kim TH; Kwon YK; Cho E
    Adv Sci (Weinh); 2021 Mar; 8(6):2003013. PubMed ID: 33747726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly Reversible Local Structural Transformation Enabled by Native Vacancies in O2-Type Li-Rich Layered Oxides with Anion Redox Activity.
    Liu H; Li C; Tong W; Hu B
    J Phys Chem Lett; 2023 Mar; 14(9):2323-2330. PubMed ID: 36847473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.