These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 37615397)
1. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness. Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397 [TBL] [Abstract][Full Text] [Related]
2. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels. Chen J; Huang J; Hu Y ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570 [TBL] [Abstract][Full Text] [Related]
3. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
4. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
5. Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring. Xu J; Wang G; Wu Y; Ren X; Gao G ACS Appl Mater Interfaces; 2019 Jul; 11(28):25613-25623. PubMed ID: 31273992 [TBL] [Abstract][Full Text] [Related]
6. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Xu C; Dai G; Hong Y Acta Biomater; 2019 Sep; 95():50-59. PubMed ID: 31125728 [TBL] [Abstract][Full Text] [Related]
8. Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. Han L; Lu X; Liu K; Wang K; Fang L; Weng LT; Zhang H; Tang Y; Ren F; Zhao C; Sun G; Liang R; Li Z ACS Nano; 2017 Mar; 11(3):2561-2574. PubMed ID: 28245107 [TBL] [Abstract][Full Text] [Related]
9. Eggshell membrane-incorporated cell friendly tough hydrogels with ultra-adhesive property. Gwon Y; Park S; Kim W; Kim H; Kim J Colloids Surf B Biointerfaces; 2023 Mar; 223():113156. PubMed ID: 36682295 [TBL] [Abstract][Full Text] [Related]
10. 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers. Kim SA; Lee Y; Park K; Park J; An S; Oh J; Kang M; Lee Y; Jo Y; Cho SW; Seo J Int J Bioprint; 2023; 9(5):765. PubMed ID: 37555082 [TBL] [Abstract][Full Text] [Related]
11. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952 [TBL] [Abstract][Full Text] [Related]
12. Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine-Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. Han L; Wang M; Li P; Gan D; Yan L; Xu J; Wang K; Fang L; Chan CW; Zhang H; Yuan H; Lu X ACS Appl Mater Interfaces; 2018 Aug; 10(33):28015-28026. PubMed ID: 30052419 [TBL] [Abstract][Full Text] [Related]
13. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734 [TBL] [Abstract][Full Text] [Related]
14. Mussel-Inspired Naturally Derived Double-Network Hydrogels and Their Application in 3D Printing: From Soft, Injectable Bioadhesives to Mechanically Strong Hydrogels. Guo Z; Xia J; Mi S; Sun W ACS Biomater Sci Eng; 2020 Mar; 6(3):1798-1808. PubMed ID: 33455396 [TBL] [Abstract][Full Text] [Related]
15. Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. Yin H; Akasaki T; Lin Sun T; Nakajima T; Kurokawa T; Nonoyama T; Taira T; Saruwatari Y; Ping Gong J J Mater Chem B; 2013 Aug; 1(30):3685-3693. PubMed ID: 32261266 [TBL] [Abstract][Full Text] [Related]
17. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures. Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487 [TBL] [Abstract][Full Text] [Related]
18. Mussel-inspired double cross-linked hydrogels with desirable mechanical properties, strong tissue-adhesiveness, self-healing properties and antibacterial properties. Chen Y; Wang Q; Li D; Mensah A; Qiu Y; Ke H; Wei Q Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111690. PubMed ID: 33545852 [TBL] [Abstract][Full Text] [Related]
19. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
20. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]