BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37615431)

  • 21. BOTUX: bayesian-like operational taxonomic unit examiner.
    Koparde VN; Adkins RS; Fettweis JM; Serrano MG; Buck GA; Reimers MA; Sheth NU
    Int J Comput Biol Drug Des; 2014; 7(2-3):130-45. PubMed ID: 24878725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A heritability-based comparison of methods used to cluster 16S rRNA gene sequences into operational taxonomic units.
    Jackson MA; Bell JT; Spector TD; Steves CJ
    PeerJ; 2016; 4():e2341. PubMed ID: 27635321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of low-abundance OTU filtering methods on the reliability and variability of microbial composition assessed by 16S rRNA amplicon sequencing.
    Nikodemova M; Holzhausen EA; Deblois CL; Barnet JH; Peppard PE; Suen G; Malecki KM
    Front Cell Infect Microbiol; 2023; 13():1165295. PubMed ID: 37377642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DMclust, a Density-based Modularity Method for Accurate OTU Picking of 16S rRNA Sequences.
    Wei ZG; Zhang SW; Zhang YZ
    Mol Inform; 2017 Dec; 36(12):. PubMed ID: 28586119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of a Database-Independent Approach To Assess the Quality of Operational Taxonomic Unit Picking Methods.
    Schloss PD
    mSystems; 2016; 1(2):. PubMed ID: 27832214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecological Observations Based on Functional Gene Sequencing Are Sensitive to the Amplicon Processing Method.
    Cholet F; Lisik A; Agogué H; Ijaz UZ; Pineau P; Lachaussée N; Smith CJ
    mSphere; 2022 Aug; 7(4):e0032422. PubMed ID: 35938727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Broadscale Ecological Patterns Are Robust to Use of Exact Sequence Variants versus Operational Taxonomic Units.
    Glassman SI; Martiny JBH
    mSphere; 2018 Jul; 3(4):. PubMed ID: 30021874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems.
    Topçuoğlu BD; Lesniak NA; Ruffin MT; Wiens J; Schloss PD
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the accuracy of amplicon-based microbiome computational pipelines on simulated human gut microbial communities.
    Golob JL; Margolis E; Hoffman NG; Fredricks DN
    BMC Bioinformatics; 2017 May; 18(1):283. PubMed ID: 28558684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MetAmp: combining amplicon data from multiple markers for OTU analysis.
    Zhbannikov IY; Foster JA
    Bioinformatics; 2015 Jun; 31(11):1830-2. PubMed ID: 25630378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.
    Rideout JR; He Y; Navas-Molina JA; Walters WA; Ursell LK; Gibbons SM; Chase J; McDonald D; Gonzalez A; Robbins-Pianka A; Clemente JC; Gilbert JA; Huse SM; Zhou HW; Knight R; Caporaso JG
    PeerJ; 2014; 2():e545. PubMed ID: 25177538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From reads to operational taxonomic units: an ensemble processing pipeline for MiSeq amplicon sequencing data.
    Mysara M; Njima M; Leys N; Raes J; Monsieurs P
    Gigascience; 2017 Feb; 6(2):1-10. PubMed ID: 28369460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MSClust: A Multi-Seeds based Clustering algorithm for microbiome profiling using 16S rRNA sequence.
    Chen W; Cheng Y; Zhang C; Zhang S; Zhao H
    J Microbiol Methods; 2013 Sep; 94(3):347-55. PubMed ID: 23899776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences.
    Wei ZG; Zhang XD; Cao M; Liu F; Qian Y; Zhang SW
    Front Microbiol; 2021; 12():644012. PubMed ID: 33841367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity.
    Nguyen NP; Warnow T; Pop M; White B
    NPJ Biofilms Microbiomes; 2016; 2():16004. PubMed ID: 28721243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution.
    Tikhonov M; Leach RW; Wingreen NS
    ISME J; 2015 Jan; 9(1):68-80. PubMed ID: 25012900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering.
    Franzén O; Hu J; Bao X; Itzkowitz SH; Peter I; Bashir A
    Microbiome; 2015 Oct; 3():43. PubMed ID: 26434730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Goldilocks Principle for the Gut Microbiome: Taxonomic Resolution Matters for Microbiome-Based Classification of Colorectal Cancer.
    Armour CR; Topçuoğlu BD; Garretto A; Schloss PD
    mBio; 2022 Feb; 13(1):e0316121. PubMed ID: 35012354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR.
    Lazarevic V; Gaïa N; Girard M; Schrenzel J
    BMC Microbiol; 2016 Apr; 16():73. PubMed ID: 27107811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses.
    Woloszynek S; Zhao Z; Chen J; Rosen GL
    PLoS Comput Biol; 2019 Feb; 15(2):e1006721. PubMed ID: 30807567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.