These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37615503)

  • 1. Understanding Rapid PET Degradation via Reactive Molecular Dynamics Simulation and Kinetic Modeling.
    Ma SM; Zou C; Chen TY; Paulson JA; Lin LC; Bakshi BR
    J Phys Chem A; 2023 Sep; 127(35):7323-7334. PubMed ID: 37615503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Chemical Kinetics Models from Atomistic Reactive Molecular Dynamics Simulations: Application to Iso-octane Combustion and Rubber Ablative Degradation.
    Sasikumar K; Ranganathan R; Rokkam S; Desai T; Burnes R; Cross P
    J Phys Chem A; 2022 Jun; 126(21):3358-3372. PubMed ID: 35587993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils.
    Zou C; Raman S; van Duin AC
    J Phys Chem B; 2014 Jun; 118(23):6302-15. PubMed ID: 24821589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Temperature and High-Pressure Pyrolysis of Hexadecane: Molecular Dynamic Simulation Based on Reactive Force Field (ReaxFF).
    Chen Z; Sun W; Zhao L
    J Phys Chem A; 2017 Mar; 121(10):2069-2078. PubMed ID: 28248502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Extrapolation of Molecular Dynamics Simulations of Complex Chemistry to Microsecond Timescales Using Kinetic Models: Applications to Hydrocarbon Pyrolysis.
    Dufour-Décieux V; Ransom B; Sendek AD; Freitas R; Blanchet J; Reed EJ
    J Chem Theory Comput; 2022 Dec; 18(12):7496-7509. PubMed ID: 36399110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Formation Mechanism of the Pyrolysis Products of Lignite at Different Temperatures Based on ReaxFF-MD.
    He X; Zhu H; Huo Y; Wang W
    ACS Omega; 2021 Dec; 6(51):35572-35583. PubMed ID: 34984288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis.
    Li W; Zhu YM; Wang G; Wang Y; Liu Y
    J Mol Model; 2015 Aug; 21(8):188. PubMed ID: 26149754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale Simulation of Polymer Pyrolysis by Coarse-Grained Molecular Dynamics: A Parametric Study.
    Nguyen VP; Jeon I; Yang S; Choi ST
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30742-30755. PubMed ID: 37307299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial Stages of the Pyrolysis of Polyethylene.
    Popov KV; Knyazev VD
    J Phys Chem A; 2015 Dec; 119(49):11737-60. PubMed ID: 26503638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Temperature Pyrolysis of
    Yu X; Zhang C; Wang H; Li Y; Kang Y; Yang K
    ACS Omega; 2023 Jun; 8(23):20823-20833. PubMed ID: 37332798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding cellulose pyrolysis via ab initio deep learning potential field.
    Xiao Y; Yan Y; Do H; Rankin R; Zhao H; Qian P; Song K; Wu T; Pang CH
    Bioresour Technol; 2024 May; 399():130590. PubMed ID: 38490462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Alcoholysis of Poly(ethylene terephthalate) by Using Supercritical Carbon Dioxide as a Green Solvent.
    Xu Y; Cui R; Han Y; Jiang J; Hu D; Zhao L; Xi Z
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive Molecular Dynamics Simulations of Polystyrene Pyrolysis.
    Li C; Yang Z; Wu X; Shao S; Meng X; Qin G
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures.
    Cheng XM; Wang QD; Li JQ; Wang JB; Li XY
    J Phys Chem A; 2012 Oct; 116(40):9811-8. PubMed ID: 22998396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Skeleton Network Generation for ReaxFF Molecular Dynamics Simulations of Hydrocarbon Fuel Pyrolysis and Oxidation via a Rate-Based Algorithm.
    Xiao Y; Zheng M; Li X; Ren C
    J Chem Theory Comput; 2024 Jul; 20(13):5539-5557. PubMed ID: 38937883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Steam-Assisted Pyrolysis of PET for the Upgrading of TPA.
    Song K; Li Y; Zhang R; Wang N; Liu J; Hou W; Zhou Q; Lu X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on the reaction mechanism of microwave pyrolysis of oily sludge by products analysis and ReaxFF MD simulation.
    Wen Y; Li W; Xie Y; Qin Z; Gu M; Wang T; Hou Y
    Environ Technol; 2022 May; 43(13):2002-2016. PubMed ID: 33319633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature thermal decomposition of iso-octane based on reactive molecular dynamics simulations.
    Guan Y; Gao Y; Lou J; Zhu X; Pan D; Ma H
    J Mol Model; 2022 Apr; 28(5):124. PubMed ID: 35449240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.