These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37615614)
1. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip. Ruiz-García I; Escobedo P; Ramos-Lorente CE; Erenas MM; Capitán-Vallvey LF; Carvajal MA; Palma AJ; López-Ruiz N Lab Chip; 2023 Sep; 23(18):4092-4103. PubMed ID: 37615614 [TBL] [Abstract][Full Text] [Related]
2. Liquid Wicking in a Paper Strip: An Experimental and Numerical Study. Patari S; Mahapatra PS ACS Omega; 2020 Sep; 5(36):22931-22939. PubMed ID: 32954142 [TBL] [Abstract][Full Text] [Related]
3. Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone. Temiz Y; Delamarche E Sci Rep; 2018 Jul; 8(1):10603. PubMed ID: 30006576 [TBL] [Abstract][Full Text] [Related]
4. An electrochemical-sensor system for real-time flow measurements in porous materials. Bathany C; Han JR; Abi-Samra K; Takayama S; Cho YK Biosens Bioelectron; 2015 Aug; 70():115-21. PubMed ID: 25797850 [TBL] [Abstract][Full Text] [Related]
5. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
6. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching. Kalish B; Tan MK; Tsutsui H Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829 [TBL] [Abstract][Full Text] [Related]
7. Automatic flow delay through passive wax valves for paper-based analytical devices. Meng H; Chen C; Zhu Y; Li Z; Ye F; Ho JWK; Chen H Lab Chip; 2021 Oct; 21(21):4166-4176. PubMed ID: 34541589 [TBL] [Abstract][Full Text] [Related]
8. Wicking in Porous Polymeric Membranes: Determination of an Effective Capillary Radius to Predict the Flow Behavior in Lateral Flow Assays. Altschuh P; Kunz W; Bremerich M; Reiter A; Selzer M; Nestler B Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877842 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455 [TBL] [Abstract][Full Text] [Related]
11. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels. Verma S; Toley BJ Langmuir; 2024 Jun; 40(22):11419-11427. PubMed ID: 38770942 [TBL] [Abstract][Full Text] [Related]
12. Flow Physics of Wicking into Woven Screens with Hybrid Micro-/Nanoporous Structures. Wang Y; Lin Y; Yang G; Wu J Langmuir; 2021 Feb; 37(7):2289-2297. PubMed ID: 33571408 [TBL] [Abstract][Full Text] [Related]
14. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics. Islam MN; Yost JW; Gagnon ZR Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries. Ma B Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083 [TBL] [Abstract][Full Text] [Related]
17. Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs). Ota R; Yamada K; Suzuki K; Citterio D Analyst; 2018 Feb; 143(3):643-653. PubMed ID: 29185559 [TBL] [Abstract][Full Text] [Related]
18. Vertical wicking tester for monitoring water transportation behavior in fibrous assembly. Singh P; Chatterjee A; Ghosh S Rev Sci Instrum; 2016 Oct; 87(10):105114. PubMed ID: 27802737 [TBL] [Abstract][Full Text] [Related]
19. Automatic characterization of capillary flow profile of liquid samples on μTADs based on capacitance measurement. Zhou J; Li H; Li X; Liang X; Feng Z; He Q; Zhang M; Chen X; Chen H; Zhang H; Guo W J Chromatogr A; 2024 Oct; 1735():465328. PubMed ID: 39232420 [TBL] [Abstract][Full Text] [Related]