BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37616166)

  • 1. Nutraceutical Activity of Anthocyanins from the Edible Berries of Rhamnus pompana.
    Pacheco-Hernández Y; Lozoya-Gloria E; Rangel-Galván M; Varela-Caselis JL; Villa-Ruano N
    Chem Biodivers; 2023 Oct; 20(10):e202301034. PubMed ID: 37616166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthocyanins of Hierbamora (Solanum nigrescens): Revealing their Nutraceutical Potential for Controlling Hypertriglyceridemia and Helicobacter pylori Viability.
    Pacheco-Hernández Y; Lozoya-Gloria E; Cruz-Durán R; Villa-Ruano N
    Chem Biodivers; 2023 Dec; 20(12):e202301423. PubMed ID: 37874748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pelargonidin-3-O-rutinoside as a novel α-glucosidase inhibitor for improving postprandial hyperglycemia.
    Xu Y; Xie L; Xie J; Liu Y; Chen W
    Chem Commun (Camb); 2018 Dec; 55(1):39-42. PubMed ID: 30394469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of anthocyanins in Rhamnus alaternus L. berries.
    Longo L; Vasapollo G; Rescio L
    J Agric Food Chem; 2005 Mar; 53(5):1723-7. PubMed ID: 15740065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait.
    Iqbal D; Khan MS; Khan MS; Ahmad S; Hussain MS; Ali M
    Lipids Health Dis; 2015 Mar; 14():15. PubMed ID: 25884722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthocyanin profiling of Berberis lycium Royle berry and its bioactivity evaluation for its nutraceutical potential.
    Pradhan PC; Saha S
    J Food Sci Technol; 2016 Feb; 53(2):1205-13. PubMed ID: 27162400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice.
    Chen Z; Wang C; Pan Y; Gao X; Chen H
    Food Funct; 2018 Jan; 9(1):426-439. PubMed ID: 29220052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypolipidemic effects of kaempferide-7-O-(4''-O-acetylrhamnosyl)-3-O-rutinoside in hyperlipidemic rats induced by a high-fat diet.
    Zhao XZ; Li XW; Jin YR; Yu XF; Qu SC; Sui DY
    Mol Med Rep; 2012 Mar; 5(3):837-41. PubMed ID: 22179545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond low-density lipoprotein: addressing the atherogenic lipid triad in type 2 diabetes mellitus and the metabolic syndrome.
    Nesto RW
    Am J Cardiovasc Drugs; 2005; 5(6):379-87. PubMed ID: 16259526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin ornithine decarboxylase and protein kinase C by polyphenolics from grapes.
    Bomser J; Singletary K; Meline B
    Chem Biol Interact; 2000 Jun; 127(1):45-59. PubMed ID: 10903418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice.
    Johnston TP; Baker JC; Jamal AS; Hall D; Emeson EE; Palmer WK
    J Cardiovasc Pharmacol; 1999 Dec; 34(6):831-42. PubMed ID: 10598127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.
    Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N
    J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ornithine decarboxylase suppression and polyamine depletion in the antiproliferative activity of polyamine analogs.
    Ghoda L; Basu HS; Porter CW; Marton LJ; Coffino P
    Mol Pharmacol; 1992 Aug; 42(2):302-6. PubMed ID: 1513327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiproliferative and antimicrobial efficacy of the compounds isolated from the roots of Oenothera biennis L.
    Singh S; Dubey V; Singh DK; Fatima K; Ahmad A; Luqman S
    J Pharm Pharmacol; 2017 Sep; 69(9):1230-1243. PubMed ID: 28555835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies.
    Chen JG; Wu SF; Zhang QF; Yin ZP; Zhang L
    Int J Biol Macromol; 2020 Jan; 143():696-703. PubMed ID: 31521662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro α-amylase and pancreatic lipase inhibitory activity of Cornus mas L. and Cornus alba L. fruit extracts.
    Świerczewska A; Buchholz T; Melzig MF; Czerwińska ME
    J Food Drug Anal; 2019 Jan; 27(1):249-258. PubMed ID: 30648578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and Characterization of Ornithine Decarboxylase from
    El-Sayed ASA; George NM; Yassin MA; Alaidaroos BA; Bolbol AA; Mohamed MS; Rady AM; Aziz SW; Zayed RA; Sitohy MZ
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362455
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Abduh MS; Saghir SAM; Al Hroob AM; Bin-Ammar A; Al-Tarawni AH; Murugaiyah V; Mahmoud AM
    Front Pharmacol; 2023; 14():1134812. PubMed ID: 36814487
    [No Abstract]   [Full Text] [Related]  

  • 19. Novel interaction of ornithine decarboxylase with sepiapterin reductase regulates neuroblastoma cell proliferation.
    Lange I; Geerts D; Feith DJ; Mocz G; Koster J; Bachmann AS
    J Mol Biol; 2014 Jan; 426(2):332-46. PubMed ID: 24096079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Anthocyanins from Four Kinds of Berries and Their Inhibition Activity to α-Glycosidase and Protein Tyrosine Phosphatase 1B by HPLC-FT-ICR MS/MS.
    Xiao T; Guo Z; Sun B; Zhao Y
    J Agric Food Chem; 2017 Aug; 65(30):6211-6221. PubMed ID: 28699753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.