These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37616514)

  • 1. Photoelectrochemical Engineering for Light-Assisted Rechargeable Metal Batteries: Mechanism, Development, and Future.
    Bao W; Wang R; Liu H; Qian C; Liu H; Yu F; Guo C; Li J; Sun K
    Small; 2023 Dec; 19(50):e2303745. PubMed ID: 37616514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Assisted Lithium Metal Anode Enabled by In Situ Photoelectrochemical Engineering.
    Bao W; Wang R; Qian C; Shen H; Yu F; Liu H; Guo C; Li J; Sun K
    Small; 2024 Mar; 20(9):e2307179. PubMed ID: 37857576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-Assisted Rechargeable Metal Batteries: Principles, Progress, and Perspectives.
    Zhang P; Cai M; Wei Y; Zhang J; Li K; Silva SRP; Shao G; Zhang P
    Adv Sci (Weinh); 2024 Jun; ():e2402448. PubMed ID: 38877647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.
    Cheng XB; Zhang R; Zhao CZ; Zhang Q
    Chem Rev; 2017 Aug; 117(15):10403-10473. PubMed ID: 28753298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries.
    Maddegalla A; Mukherjee A; Blázquez JA; Azaceta E; Leonet O; Mainar AR; Kovalevsky A; Sharon D; Martin JF; Sotta D; Ein-Eli Y; Aurbach D; Noked M
    ChemSusChem; 2021 Nov; 14(21):4690-4696. PubMed ID: 34339584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Using Covalent Organic Frameworks to Stabilize Metal Anodes for Highly-Efficient Rechargeable Batteries.
    Sun J; Kang F; Yan D; Ding T; Wang Y; Zhou X; Zhang Q
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202406511. PubMed ID: 38712899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries.
    Shi R; Shen Z; Yue Q; Zhao Y
    Nanoscale; 2023 Jun; 15(21):9256-9289. PubMed ID: 37159004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries.
    Zhao Y; Ye Y; Wu F; Li Y; Li L; Chen R
    Adv Mater; 2019 Mar; 31(12):e1806532. PubMed ID: 30672032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries.
    Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z
    Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries.
    Wei C; Tan L; Zhang Y; Zhang K; Xi B; Xiong S; Feng J; Qian Y
    ACS Nano; 2021 Aug; 15(8):12741-12767. PubMed ID: 34351748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination.
    Zhang X; Wang A; Liu X; Luo J
    Acc Chem Res; 2019 Nov; 52(11):3223-3232. PubMed ID: 31657541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Research of Photo-Assisted Lithium-Based Rechargeable Batteries.
    Yu X; Liu G; Wang T; Gong H; Qu H; Meng X; He J; Ye J
    Chemistry; 2022 Nov; 28(66):e202202104. PubMed ID: 36039771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future.
    Wang R; Liu H; Zhang Y; Sun K; Bao W
    Small; 2022 Aug; 18(31):e2203014. PubMed ID: 35780491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries.
    Sun B; Xiong P; Maitra U; Langsdorf D; Yan K; Wang C; Janek J; Schröder D; Wang G
    Adv Mater; 2020 May; 32(18):e1903891. PubMed ID: 31599999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries.
    Patrike A; Yadav P; Shelke V; Shelke M
    ChemSusChem; 2022 Jul; 15(14):e202200504. PubMed ID: 35560981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries.
    Pei C; Xiong F; Yin Y; Liu Z; Tang H; Sun R; An Q; Mai L
    Small; 2021 Jan; 17(3):e2004108. PubMed ID: 33354934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brushed Metals for Rechargeable Metal Batteries.
    Chen W; Salvatierra RV; Li JT; Luong DX; Beckham JL; Li VD; La N; Xu J; Tour JM
    Adv Mater; 2022 Aug; 34(31):e2202668. PubMed ID: 35709635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes.
    Wang T; Hua Y; Xu Z; Yu JS
    Small; 2022 Feb; 18(5):e2102250. PubMed ID: 34672096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.