BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37619563)

  • 1. Succinylation of a KEAP1 sensor lysine promotes NRF2 activation.
    Ibrahim L; Stanton C; Nutsch K; Nguyen T; Li-Ma C; Ko Y; Lander GC; Wiseman RL; Bollong MJ
    Cell Chem Biol; 2023 Oct; 30(10):1295-1302.e4. PubMed ID: 37619563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinylation of a KEAP1 sensor lysine promotes NRF2 activation.
    Ibrahim L; Stanton C; Nutsch K; Nguyen T; Li-Ma C; Ko Y; Lander GC; Wiseman RL; Bollong MJ
    bioRxiv; 2023 May; ():. PubMed ID: 37215033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling.
    Ko Y; Hong M; Lee S; Kumar M; Ibrahim L; Nutsch K; Stanton C; Sondermann P; Sandoval B; Bulos ML; Iaconelli J; Chatterjee AK; Wiseman RL; Schultz PG; Bollong MJ
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2300763120. PubMed ID: 37155889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.
    Bollong MJ; Lee G; Coukos JS; Yun H; Zambaldo C; Chang JW; Chin EN; Ahmad I; Chatterjee AK; Lairson LL; Schultz PG; Moellering RE
    Nature; 2018 Oct; 562(7728):600-604. PubMed ID: 30323285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophilic metabolites targeting the KEAP1/NRF2 partnership.
    Dinkova-Kostova AT; Hakomäki H; Levonen AL
    Curr Opin Chem Biol; 2024 Feb; 78():102425. PubMed ID: 38241876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway.
    Baird L; Yamamoto M
    Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1.
    Unni S; Deshmukh P; Krishnappa G; Kommu P; Padmanabhan B
    FEBS J; 2021 Mar; 288(5):1599-1613. PubMed ID: 32672401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism.
    Song MY; Lee DY; Chun KS; Kim EH
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide.
    Liu H; Feng Y; Xu M; Yang J; Wang Z; Di G
    Cell Commun Signal; 2018 Nov; 16(1):81. PubMed ID: 30442144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Basis of the KEAP1-NRF2 Signaling Pathway.
    Suzuki T; Takahashi J; Yamamoto M
    Mol Cells; 2023 Mar; 46(3):133-141. PubMed ID: 36994473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury.
    Cheng Y; Cheng L; Gao X; Chen S; Wu P; Wang C; Liu Z
    Theranostics; 2021; 11(2):861-877. PubMed ID: 33391509
    [No Abstract]   [Full Text] [Related]  

  • 12. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells.
    Georgiou-Siafis SK; Tsiftsoglou AS
    Biochem Pharmacol; 2020 May; 175():113900. PubMed ID: 32156661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.
    Dinkova-Kostova AT; Kostov RV; Canning P
    Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells.
    Cheng LB; Li KR; Yi N; Li XM; Wang F; Xue B; Pan YS; Yao J; Jiang Q; Wu ZF
    Oncotarget; 2017 Feb; 8(8):13186-13194. PubMed ID: 28061435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetaminophen exposure alters the DNA methylation pattern of Mugilogobius chulae, along with the changes in the Nrf2-Keap1 signaling pathway.
    Tang T; Wang Y; Wang C; Zhao Y; Nie X
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Aug; 270():109655. PubMed ID: 37187267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Quantitative Proteomics Approach to Gain Insight into NRF2-KEAP1 Skeletal Muscle System and Its Cysteine Redox Regulation.
    Abu R; Yu L; Kumar A; Gao L; Kumar V
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2-Keap1 signaling in oxidative and reductive stress.
    Bellezza I; Giambanco I; Minelli A; Donato R
    Biochim Biophys Acta Mol Cell Res; 2018 May; 1865(5):721-733. PubMed ID: 29499228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection.
    Hu B; Wei H; Song Y; Chen M; Fan Z; Qiu R; Zhu W; Xu W; Wang F
    J Virol; 2020 May; 94(10):. PubMed ID: 32161178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.