These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 37620156)

  • 1. Dissociable Neural Mechanisms Underlie the Effects of Attention on Visual Appearance and Response Bias.
    Itthipuripat S; Phangwiwat T; Wiwatphonthana P; Sawetsuttipan P; Chang KY; Störmer VS; Woodman GF; Serences JT
    J Neurosci; 2023 Sep; 43(39):6628-6652. PubMed ID: 37620156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual Difficulty Regulates Attentional Gain Modulations in Human Visual Cortex.
    Sawetsuttipan P; Phunchongharn P; Ounjai K; Salazar A; Pongsuwan S; Intrachooto S; Serences JT; Itthipuripat S
    J Neurosci; 2023 May; 43(18):3312-3330. PubMed ID: 36963848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus visibility and uncertainty mediate the influence of attention on response bias and visual contrast appearance.
    Itthipuripat S; Chang KY; Bong A; Serences JT
    J Vis; 2019 Dec; 19(14):8. PubMed ID: 31826253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional MRI and EEG Index Complementary Attentional Modulations.
    Itthipuripat S; Sprague TC; Serences JT
    J Neurosci; 2019 Jul; 39(31):6162-6179. PubMed ID: 31127004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Unattended Stimuli Depends on the Phase of Prestimulus Neural Oscillations.
    Harris AM; Dux PE; Mattingley JB
    J Neurosci; 2018 Mar; 38(12):3092-3101. PubMed ID: 29459372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.
    Rungratsameetaweemana N; Itthipuripat S; Salazar A; Serences JT
    J Neurosci; 2018 Jun; 38(24):5632-5648. PubMed ID: 29773755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two different mechanisms support selective attention at different phases of training.
    Itthipuripat S; Cha K; Byers A; Serences JT
    PLoS Biol; 2017 Jun; 15(6):e2001724. PubMed ID: 28654635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Oscillatory Correlates of Attention Control in the Alpha-Band with Distinct Consequences on Perceptual Gain and Metacognition.
    Trajkovic J; Di Gregorio F; Avenanti A; Thut G; Romei V
    J Neurosci; 2023 May; 43(19):3548-3556. PubMed ID: 37019621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention modulates early visual processing: An association between subjective contrast perception and early C1 ERP component.
    Pan WN; Zhao YW; Luo ZX; Chen Y; Cai YC
    Psychophysiology; 2024 May; 61(5):e14507. PubMed ID: 38146152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
    Green JJ; Boehler CN; Roberts KC; Chen LC; Krebs RM; Song AW; Woldorff MG
    J Neurosci; 2017 Aug; 37(33):7803-7810. PubMed ID: 28698387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional bias to affective faces and complex IAPS images in early visual cortex follows emotional cue extraction.
    Bekhtereva V; Craddock M; Müller MM
    Neuroimage; 2015 May; 112():254-266. PubMed ID: 25818682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Too little, too late, and in the wrong place: Alpha band activity does not reflect an active mechanism of selective attention.
    Antonov PA; Chakravarthi R; Andersen SK
    Neuroimage; 2020 Oct; 219():117006. PubMed ID: 32485307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the attentional control of visual cortex: a selective problem in the left visual hemifield.
    Nagamatsu LS; Carolan P; Liu-Ambrose TY; Handy TC
    Neuropsychologia; 2011 Jun; 49(7):1670-8. PubMed ID: 21356222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding.
    Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J
    Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Mechanisms of Attentional Control for Objects: Decoding EEG Alpha When Anticipating Faces, Scenes,and Tools.
    Noah S; Powell T; Khodayari N; Olivan D; Ding M; Mangun GR
    J Neurosci; 2020 Jun; 40(25):4913-4924. PubMed ID: 32404346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal.
    Sylvester CM; Shulman GL; Jack AI; Corbetta M
    J Neurosci; 2009 Aug; 29(34):10671-82. PubMed ID: 19710319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.