These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37620364)

  • 1. A framework for Li-ion battery prognosis based on hybrid Bayesian physics-informed neural networks.
    Nascimento RG; Viana FAC; Corbetta M; Kulkarni CS
    Sci Rep; 2023 Aug; 13(1):13856. PubMed ID: 37620364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis.
    Wang F; Zhai Z; Zhao Z; Di Y; Chen X
    Nat Commun; 2024 May; 15(1):4332. PubMed ID: 38773131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti
    Shang M; Chen X; Li B; Niu J
    ACS Nano; 2020 Mar; 14(3):3678-3686. PubMed ID: 32078306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries.
    Zhang Q; Shang Y; Li Y; Cui N; Duan B; Zhang C
    ISA Trans; 2020 Feb; 97():448-457. PubMed ID: 31653405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de Macêdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal short circuit detection in Li-ion batteries using supervised machine learning.
    Naha A; Khandelwal A; Agarwal S; Tagade P; Hariharan KS; Kaushik A; Yadu A; Kolake SM; Han S; Oh B
    Sci Rep; 2020 Jan; 10(1):1301. PubMed ID: 31992751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherently Interpretable Physics-Informed Neural Network for Battery Modeling and Prognosis.
    Wang F; Zhi Q; Zhao Z; Zhai Z; Liu Y; Xi H; Wang S; Chen X
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37934643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Battery Testing and Discharge Model Validation for Electric Unmanned Aerial Vehicles (UAV).
    Di Nisio A; Avanzini G; Lotano D; Stigliano D; Lanzolla AML
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.
    Saha P; Dash S; Mukhopadhyay S
    Neural Netw; 2021 Dec; 144():359-371. PubMed ID: 34547672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms.
    D OP; Babu PS; V I; B A; S V; C K
    Sci Rep; 2024 Jul; 14(1):16036. PubMed ID: 38992178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Rate Long Cycle-Life Li-Air Battery Aided by Bifunctional InX
    Rastegar S; Hemmat Z; Zhang C; Plunkett S; Wen J; Dandu N; Rojas T; Majidi L; Misal SN; Ngo AT; Curtiss LA; Salehi-Khojin A
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4915-4922. PubMed ID: 33480245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance-based forecasting of lithium-ion battery performance amid uneven usage.
    Jones PK; Stimming U; Lee AA
    Nat Commun; 2022 Aug; 13(1):4806. PubMed ID: 35974010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.
    Okamoto E; Watanabe K; Hashiba K; Inoue T; Iwazawa E; Momoi M; Hashimoto T; Mitamura Y
    ASAIO J; 2002; 48(5):495-502. PubMed ID: 12296569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second life batteries lifespan: Rest of useful life and environmental analysis.
    Casals LC; Amante García B; Canal C
    J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.